Chapter 7
Towards a Microbial Conservation
Perspective in High Mountain Lakes

Emilio O. Casamayor

Abstract Microorganisms are fundamental components to maintain the ecological
integrity of any ecosystem. Microscopic organisms have been, however, mostly
excluded in conservation studies and microbiology has been developed as a sci-
entific discipline lacking a natural history background. The detailed genetic studies
carried out in the Aigiiestortes i Estany de Sant Maurici National Park and recent
works in the mostly scarce literature, show that the mostly oligotrophic and highly
diluted waters in high mountain lakes hold a larger microbial phylogenetic
uniqueness than expected and are reservoirs of large evolutionary potential, pro-
viding an overall natural history perspective for alpine archaea, bacteria, fungi and
protists. Microbes arise as an important part of the biological richness of these
environments that should be considered as a fundamental component of the natural
heritage. Microbial ecologists are now closer than ever to deal with conservation
biology concepts such as biological richness, extinction, biotic interactions, and
ecosystems management. First insights emerge for establishing the microbial tol-
erance to different environmental conditions, for estimating which is the potentiality
of survival and dispersal abilities in the different species, and for highlighting how
the underappreciated microbiota will respond to stresses and disturbances brought
by the global change. Warming and eutrophication may jeopardise the most
idiosyncratic microbial populations that have found in these (ultra)oligotrophic and
diluted systems the most appropriate conditions to thrive. Environmental managers
and lawyers, citizen, and stakeholders, in general, have now access to scientifically
informed advice for the unseen microbial life in the unexpectedly rich high
mountain microbial ecosystems.
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7.1 Introduction

Conservation biology is the scientific study of biodiversity oriented to protect
species, habitats and ecosystems from unsustainable exploitation, uncontrolled
extinctions and the increasing weakening of biological interactions. Conservation
biology involves the interaction among apparently unrelated disciplines such as
social and natural sciences, economics and computational and political sciences,
among others, promoting integrative and transdisciplinary views on ecosystem
health and aiming to formulate the scientific basis for the best practices in natural
resource management. Unlike with plants and animals, microscopic organisms
have been mostly excluded in conservation studies and microbiology has been
developed as a scientific discipline lacking a natural history background (Margulis
et al. 1986). Apparently, the study of microorganisms lacks naturalistic attractive
and conservation-orientated perspectives because of microbial inconspicuousness,
low probabilities of extinction and potential widespread distribution. Therefore,
environmental managers and lawyers, citizens and stakeholders, in general, have
obviated the fate of natural microbial communities among their daily worries and
strategic planning beyond pathogens. Threats on microorganisms have been not
considered as part of the natural resources management policies or in the esti-
mation of the influence of human activities in nature. Ecosystem functioning
carried out by microorganisms appears to rely on a high functional redundancy and
its maintenance could be largely uncoupled to microbial biodiversity erosion
(Wertz et al. 2006). Microorganisms, however, are the most abundant and wide-
spread forms of life on Earth and encompass the highest taxonomic, metabolic,
genetic, and functional diversity. They rule the whole biodiversity on Earth and
their activities have a major ecosystem effect (Madigan et al. 2015). Conservation
biology perspectives where the fundamental unit in the conservation of biodiver-
sity is not the species but the habitat would probably apply very well for
microorganisms.

In the early 90s of the past century, the International Programme of Biodiversity
Science DIVERSITAS, a programme promoted among others by the International
Council of Scientific Unions (ICSU) and now migrated to both Future Earth (http://
www.futureearth.org/) and the Intergovernmental Science-Policy Platform on
Biodiversity and Ecosystem Services (IPBES), tried to reverse this lack of
knowledge highlighting the crucial role that microbial biodiversity plays in the
maintenance of many ecosystem services. The term “ecosystem services” describes
ecosystem resources and processes that benefit human society, and its identification
and value quantification can provide additional arguments for the protection of
species and ecosystems that could easily reach public opinion and policy decisions
(Daily et al. 2009). DIVERSITAS emphasised the immense genetic diversity of
microorganisms and their crucial and unique roles as essential components of food
chains and biogeochemical cycles and included “microbial biodiversity” within the
nine fundamental cross-cutting research themes of critical importance for
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biodiversity science. The Microbial Biodiversity programme called to develop
innovative methods and techniques to accelerate the discovery and characterization
of microbial diversity, and to establish reliable databases to collect and exchange
information on the biological characteristics of microorganisms. It was particularly
encouraged to improve the knowledge in freshwater microbial diversity to increase
the available understanding of the effects of microbial diversity on aquatic
ecosystem functioning, suppression of diseases organisms, provision of clean water
through the respiration of organic carbon, denitrification and other metabolic pro-
cesses, and to gain insights into the functioning and microbial regulation of bio-
geochemical cycles. The programme also urged to explore major issues concerning
the conservation, origin and maintenance of microbial biodiversity.

In the past 20 years, and mainly over the past decade, microbial ecologists have
developed, optimised and standardised powerful methods to capture microbial
taxonomic and functional diversity. They have successfully combined multidisci-
plinary approaches from different scientific disciplines such as microbiology,
ecology, molecular biology, bioinformatics and computational science and have
efficiently linked available information on microbial diversity within a worldwide
network. This sustained effort circumvented some of the methodological and
conceptual concerns that had strongly limited the general perception of how
important microbes are for Earth biodiversity and initiated the effective transplan-
tation of concepts and basic knowledge of the general ecology grounded on plants
and animals to microbial ecology. Efforts are now addressed to establish a pre-
dictive framework for the distribution and diversity of microorganisms, blurring the
disciplinary boundaries that traditionally separated ecologists of tall and tiny.
Currently, global initiatives such as the International Census of Marine
Microbes (ICoMM), the Earth Microbiome (Gilbert et al. 2014) and the Human
Microbiome projects (Methé et al. 2012), as well as international marine initiatives
to profusely explore the microbial component in the surface (Tara Oceans Cruise,
JCVI Global Ocean Survey, Ocean Sampling Day) and in the deep ocean
(Malaspina Expedition) have been successfully promoted. The creation of an
interdisciplinary Unified Microbiome Initiative to understand and harness the
capabilities of the set of Earth’s microbial ecosystems has been recently proposed
(Alivisatos et al. 2015; Dubilier et al. 2015). Although, nothing equivalent is found
for the freshwater realm despite the fact that the wide repertory of inland waters on
Earth (Downing et al. 2006) contains a large, novel and unexplored microbiota
(e.g. Hahn 2006; Esteban and Finlay 2010; Barberan and Casamayor 2011; Newton
et al. 2011).

In the case of aquatic ecosystems from remote high-altitude mountain areas, the
gap of knowledge is still big. Both the oligotrophic and highly diluted nature of the
lake waters and the difficulties to collect samples in such painful to reach places
have limited the interest among microbiologists to explore these isolated envi-
ronments. Comparatively, such remote inland waters have remained less explored
than lowland freshwaters. Although, aquatic microbes are abundant in the plankton
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of these lakes (Felip et al. 1999), and the environmental heterogeneity at the local
scale is larger than expected (Catalan et al. 1992, 2006). In addition, mountain
lakes have been traditionally studied by limnologists with a background of ecology
and phyto- and zooplankton biology (e.g. Catalan et al. 2006 and references
therein, Tolotti et al. 2009) rather than by microbial ecologists with a background
in microbiology and genetics. Consequently, the genetic diversity, taxonomic
identity and ecological distribution of the unseen majority in genuinely high
mountain systems have remained mostly unknown. A few investigations in the past
years are however helping to fill this gap, primarily in the Alps (Pernthaler et al.
1998; Pérez and Sommaruga 2011), the Himalayas (Liu et al. 2006; Sommaruga
and Casamayor 2009; Kammerlander et al. 2015), the high mountains of west USA
(Nelson 2009; Hayden and Beman 2016) and, specially, in the Central Pyrenees
within and around the Aiguestortes i Estany de Sant Maurici National Park
(Catalan et al. 2006). Meteorologic variability, catchment inputs, and warming are
key factors structuring microbial communities (Nelson 2009). These lakes are very
sensitive to detect an excess of reactive N of human origin circulating through the
atmosphere (Camarero and Catalan 2012). Some of these lakes are glacier-fed
ecosystems and hold specific physical conditions, biodiversity and ecological
functioning (Edwards et al. 2013; Peter and Sommaruga 2016). High mountain
lakes formed by glaciers erosion are very comparable worldwide ecosystems, and
the new lakes that are currently appearing after the glacial retreat in mountain areas
offer great opportunities for ecological and limnological studies (Catalan and
Rondon 2016). Microbial diversity in high-altitude aquatic ecosystems from
highlands such as Tibetan lakes (Zhang et al. 2013) and Andean lakes (Ordofiez
et al. 2009) are not considered here because of the consistent limnological,
physicochemical and environmental differences mostly characteristic from the
relatively flat terrain of plateau areas.

Probably, one of the most intensive and extensive limnological studies of alpine
lakes to date have been carried out in the Central Pyrenees (Catalan et al. 2006).
Extensive studies on microscopically conspicuous organisms have been already
done (Catalan et al. 2015; Felip et al. 1999; Pla et al. 2003) and will be obviated
here. Using environmental ribosomal RNA genes sequencing, a sample set repre-
sentative of the lacustrine Pyrenean landscape heterogeneity has been studied in
detail for bacteria, archaea and mostly inconspicuous microbial eukaryotes biodi-
versity, as will be presented further in this chapter. This alpine area contains the
main freshwater lake district of south-west Europe, and constitutes a mosaic of
highly diverse water bodies mimicking the geological diversity of the catchments
(Catalan et al. 1992) that usually remain ice-covered for 4—7 months every year
(typically from December to April). Very low concentrations of nutrients and salts
(i.e. ultraoligotrophic and hypotonic waters), persistent extreme conditions (high
UV exposure and water transparency, and low temperatures), and isolation might
promote an adapted microbiota with a large number of specialist populations
(Catalan et al. 2006). Although, lakes located at high altitudes efficiently integrate
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information about changes in the catchment and land use and in the atmosphere and
are very sensitive to environmental and global changes (Adrian et al. 2009), mainly
remote depositions and global warming. These changes may induce rapid changes
in the microbial community composition and potentially erode the most idiosyn-
cratic populations leading to species decline by ecosystem degradation.
Experimental evidence is however needed to test these hypotheses. New approaches
to predict the impacts of global change at the microbial community level are also
required for scientifically informed conservation and management of biodiversity
and ecosystem services (Bellard et al. 2012).

7.2 A Biodiversity Unit for the Microbial World

Systematics and taxonomy are fundamental tools to track biological history under-
standing life forms origins and relationships and to help to organise biological
complexity knowledge to support biological conservation, respectively (Cotterill
1995). Estimating the number of microbial species even at the order of magnitude is,
however, a great challenge in biology and matter of intense debate in microbiology.
Two of the main problems microbiologists have to successfully face this challenge
are the own definition of the species concept and the little success bringing into a
culture most of the wild microbes, respectively (Fig. 7.1). The species definition for
bacteria requires individuals previously isolated and grown in culture and needs
highly standardised laboratory protocols, comparative genomic information and a
dataset of physiological and other phenotypical features. Thus, a pragmatic phy-
lophenetic species concept for microbial taxonomists is only useful if pure cultures
are available in the laboratory (Rossello-Mora and Amann 2001). Currently, c. 13,000
bacterial and archaeal species are available in culture (Amann and Rossello-Mora
2016). The last estimation using >20,000 microbial molecular surveys and mathe-
matical modeling and scaling laws predicts the existence of between 10''-10'?
microbial species on Earth (Locey and Lennon 2016). If true, and according to the
current number of catalogued microorganisms, that would mean that 99.999% of total
microbial species are missing still. However, the lack of consensus ranges of several
orders of magnitude. Estimations based on the empirical analysis of the bacterial and
archaeal 16S rRNA gene sequences available in curated databases (c. 1.5 million
full-length sequences), reduce the molecular census to a few millions Operational
Taxonomic Units (OTU, 97% sequence identity “species-level” cutoff) (Schloss et al.
2016). In addition, it has also been predicted that environmental 16S rRNA gene
sequences of the highest novelty are reaching a plateau and that most of the high
microbial taxa will be discovered within a few years (Yarza et al. 2014). Still, to carry
out the inventory and interpretation of the most abundant organisms on earth is a vast
enterprise that will keep microbiologists busy for many decades. Telling apart
microbial species is still highly controversial and difficult, and a consensus definition
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of what should be the most operative and predictive unit to measure biological
diversity in the microbial world is still under discussion (range 97-99% identity in
16S rRNA gene sequence, Kim et al. 2014). Luckily, diversity can be studied with any
coherent and well-defined standardised unit as far as it is defined in a simple, clear, and
unambiguous way. The ribosomal RNA genes are still the most successful proxy for a
combined view of systematics and taxonomy in microorganisms circumventing the
limitation that only a very small number of microbes can grow in culture media.
Although, two intrinsic limitations should be considered. First, the use of a proxy too
conservative for the “species level” that underestimates species diversity. Second, the
fact that it fails to detect fast speciation processes in natural communities by hori-
zontal gene flow. These genetic processes can maintain adaptability and provide
ecological success to colonise particular environments (e.g. Llorens-Marés et al.
2017), leading to the emergence of a new “ecological species” nearly identical in the
16S rRNA gene sequence to a former population.

Altogether, microbial ecology is still in its infancy predicting species distribu-
tions across landscapes and identifying areas of high and low species richness, or
highlighting whether or not vulnerable groups of microbial species or microbial
processes exits, missing useful information for land management. There is con-
siderable diversity to be explored yet, but the rate of new full-length sequences
deposited in databases has consistently declined in the last years since
next-generation sequencing (NGS) and high throughput has been expanded
(Schloss et al. 2016). Although microbes can currently be reasonably well identified
and classified in relation to each other allowing fast and proper universal
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Fig. 7.1 Temporal trend and annual rates for the available number of pure cultures of bacteria and
Archaea (green label), 16S rRNA gene sequences in curated databases (RDP and SILVA) and
genomes (obtained from cultured strains and metagenomic surveys) (orange label). Data from
Llorens-Marés 2015, Ph.D. thesis, University of Barcelona
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communication among microbial ecologists, a high-quality census needs full-length
16S rRNA gene sequences and the short sequence lengths provided by current NGS
methodologies need to be substantially improved (Amann and Rossello-Mora
2016). Genomes and metagenomes currently available are growing exponentially
(Fig. 7.1), and single cell genomics permits to reach the genetic potential of a
microorganism without culturing. For the microbial world, the inadequacy of
methods and conceptual separation of microbiology from natural sciences with
strong ecological and evolutionary background such as zoology and botany should
not be an unaffordable challenge anymore. In fact, microbial systems may push
classical natural sciences disciplines and theoretical ecology forward to new
unexplored frontiers. An integrative approach prevails today in the environmental
sciences with an inclusive view on biological interactions networks (Faust and Raes
2012; Fuhrman et al. 2015), and on the integration of molecular biology at the
community and ecosystem levels (Raes and Bork 2008). Merging community
ecology and phylogenetics among co-occurring species can provide a new view for
the study of microbial assemblages in situ (Barberan and Casamayor 2014). The use
of phylogenetic approaches as a measure of biodiversity based on the phylogenetic
difference between species (i.e. phylogenetic diversity, PD), offers new perspectives
without previously fixing an operational taxonomic unit definition, and reduces to a
single value the whole community complexity (see below). This approach may help
to find patterns and to develop hypotheses based on the coexistence and adaptation
of closely related species and to try to unveil the processes that shape community
structure and composition.

7.3 A Natural History Perspective for Microorganisms
in High Mountain Lakes

High-altitude mountain lakes hold a larger microbial biodiversity than could be
initially expected in such very diluted waters. Typically, several hundred million
prokaryotic cells and around a million of microscopic eukaryotes are present per
litre of alpine lake water (Felip et al. 1999). In general, freshwater archaea in high
mountain lakes show one to two orders of magnitude lower abundances than
bacterial cells, and the richness within the Bacteria domain is substantially higher
than within the Archaea. For instance, the analysis of the plankton in three con-
nected shallow Pyrenean lakes within the Aiguestortes i Estany de Sant Maurici
National Park estimated a bacterial richness of c. 2500 OTUs and an archaeal
richness of c. 900 OTUs (Fig. 7.2, upper panel). These estimations required a
sampling effort of c. 250,000 bacterial and c. 20,000 archaeal 16S rRNA gene
sequences (Fig. 7.2, lower panel), only accessible through recent NGS
technologies.
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Fig. 7.2 Rank abundance (top) and rarefaction curves (bottom) for bacterial and archaeal OTUs
inhabiting three connected shallow Pyrenean lakes communities within the Aigiiestortes i Estany
de Sant Maurici National Park. From Vila-Costa et al. (2013) with kind permission from Oxford
University Press

7.3.1 Bacteria

The major bacterial taxa present in high mountain Pyrenean lakes are characteristic
of the plankton present in worldwide freshwater environments and different from
the oceans (Fig. 7.3, data from Barberan and Casamayor 2010). Bacteroidetes,
Betaproteobacteria and Actinobacteria are the predominant groups in high-altitude
lakes, with a significantly higher proportion of Betaproteobacteria and a lower
proportion of Alphaproteobacteria than in lowland freshwaters (Barberan and
Casamayor 2010). Also, the lakes’ ecosystems can be synoptically sorted according
to the evolutionary history contained in the whole bacterial assemblages without the
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Fig. 7.3 Bacterial taxonomic composition of Pyrenean lakes, and comparison with a global
meta-analysis of lakes and seas (Barberan and Casamayor 2010). Significant differences are shown
(*P < 0.05, **P < 0.01, t-test). From Barberan et al. (2012), Ph.D. thesis, University of Barcelona

need of any particular taxonomic level using the phylogenetic dispersion of com-
munities, through the phylogenetic diversity index (PD) (Barberan and Casamayor
2014). High or low levels of PD did not necessarily match those Pyrenean lakes
with the highest or lowest OTUs richness, respectively, adding relevant information
for stakeholders and managers and showing where most of the biological diversity
accumulates (see Supporting information in Barberan and Casamayor 2014).
Higher PD might result in higher functional diversity and versatility of the bacterial
assemblages, but this assumption remains to be tested. This integrative tool also
provides proper interbiome comparison. Interestingly, when the Pyrenean dataset is
compared with a similar study of the plankton from surface waters in different seas
and oceans (first 5 m sampled), and after correcting for unequal number of
sequences between the studies, it arises that freshwater bacterial communities
accumulated higher genetic dispersion than the very surface marine assemblages
(Fig. 7.4). This result nicely contextualises any bacterial community circumventing
culturing and species definitions limitations and agrees with the highest environ-
mental heterogeneity present in the Pyrenean dataset analysed (see below). It also
indicates that microbial diversity is a direct reflection of habitat diversity.
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A significant relationship between Pyrenean lake area and PD of bacterial
assemblages also exists (Fig. 7.5). Interestingly, the slope (z) of the log-transformed
relationship (0.130) was similar to the value found in a study carried out in
mountain lakes in Sierra Nevada (0.161) using OTUs obtained from a bacterial
genetic fingerprinting profile (Fig. 7.6 panel A). The slope z is usually <1 meaning
that, although the number of species increases with area, larger areas have in
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proportion fewer species per unit area. In the case of bacteria, the z value (the slope
of the species area relationship) is closer to the lower end, similar to the values
reported for other planktonic organisms (Fig. 7.6 panel B). The species—area
relationship (SAR) has been successfully used in macroecology and conservation
biology to predict extinction according to the habitat reduction. In the case of
microorganisms, how reliable are the extrapolation of the ends of the slope can be
now better explored using massive sequencing technologies. Most microorganisms
likely show long-distance dispersal abilities and large population sizes modulating
the relative importance of niche, stochastic and historical processes that shape the
structure of microbial communities (Barberan et al. 2014a), and first insights show
that bacterial ubiquity may be a common pattern in high-altitude lakes worldwide
(Sommaruga and Casamayor 2009). Cell dormancy, high persistence, and the fact
that a single cell can generate a new population in a short time are microbial
attributes that all together should be considered to accurately address the mecha-
nisms that generate this pattern. Most probably, the presence of more available
niches in larger lakes, a higher number of interactions, and more complex food
webs may play a major role in determining bacterial richness and phylogenetic

Fig. 7.6 a Significant
relationship (z value, the
slope of the species area
relationship) found between
bacterial OTU richness and
alpine lakes area in Sierra
Nevada, SE Spain.

b Comparison of z values
among taxa. From Reche
et al. (2005) with kind
permission from John Wiley
& Sons, Inc.
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dispersion. Additional studies exploring the mechanisms that generate this pattern,
the interbiome and empirical variability of the z values mentioned above, the
variations with taxonomic resolution (Horner-Devine et al. 2004) and the limits and
spatial scaling, are topics that microbial ecologists may be interested in developing
further and high mountain lakes offer a very convenient natural scenario to explore
it. If microorganisms are globally dispersed and cosmopolitan, the OTUs locally
present in Pyrenean lakes will represent a large fraction of the cumulative species
pool present in high mountain lakes around the world. Because of the high simi-
larity of this type of environment across continents, this is a hypothesis that can be
reasonably well tested.

The quantification of community similarity based on phylogenetic relatedness
also provides new perspectives to bridge the gap between evolutionary and eco-
logical analyses (Barberan et al. 2014a). Patterns capturing how phylogenetic
community similarity is distributed along environmental gradients emerge without
relying on any particular operational taxonomic unit definition (Barberdn and
Casamayor 2014). After testing for biogeographical patterns in Pyrenean lakes
using distance matrix based on both environmental variables and geographical
distance, environmental filtering and not spatial distance is most probably shaping
the phylogenetic structure of the freshwater bacterial assemblages (Fig. 7.7). The
high environmental richness within small distances in the Pyrenean lacustrine area,
covered a gradient of environmental and trophic conditions of more than four units
of pH, one order of magnitude of conductivity (from highly diluted to typical
freshwater values), 10-fold phosphorous concentration, and 20-fold chlorophyll-a
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Fig. 7.7 Relationship between the UniFrac distance matrix and a the environmental Euclidean
matrix (E) or b the spatial distance matrix (S). UniFrac is a B-diversity metric that quantifies
community similarity based on phylogenetic relatedness. From Barberan and Casamayor (2014)
with kind permission from John Wiley & Sons, Inc.
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Fig. 7.8 Taxonomic novelty (percentage of identity with DNA sequences available in GenBank)
for the bacterial 16S rRNA gene sequences found in the epilithon biofilm, plankton, slush (mixture
of water and snow) and snow melting ponds in lakes of the Pyrenees. From Bartrons et al. (2012)
with kind permission from Springer Publisher

content, being most of the lakes ultraoligotrophic or oligotrophic. Again, the higher
than expected habitat richness provides a rich background for diverse planktonic
bacterial communities.

Bacteria are also highly abundant and diverse in the epilithic biofilms of streams
and lakes, although no consistent global elevational patterns in biodiversity for
stream bacteria exist (Wang et al. 2017). These biofilms play, however, a relevant
and specific biogeochemical role in mountain lakes (Vila-Costa et al. 2014).
Bacteroidetes and Cyanobacteria are the most common groups found in the epili-
thon, whereas Actinobacteria were not detected and Betaproteobacteria were pre-
sent in low abundances (Bartrons et al. 2012). Interestingly, most of the epilithic
Bacteroidetes form distinct phylogenetic clusters and may represent particular
poorly known ecotypes with a potentially major role in the organic matter cycling.
In fact, the taxonomic novelty analysis for the bacterial 16S rRNA gene sequences
showed that only 40% of the epilithon bacteria had been previously reported at the
“species” level. Such value reached >80% in the slush (Llorens-Mares et al. 2012)
or the plankton (Fig. 7.8). Interestingly, >25% of the epilithon species may
potentially represent new bacterial families or even orders (identity in 16S rRNA
gene < 95%). This idiosyncratic assemblage may be related to the large hetero-
geneity operating at the microscale, closer microbial interactions and coexistence of
different physiologies and aerobic, anaerobic, phototrophic and chemotrophic
metabolisms (Bartrons et al. 2012; Vila-Costa et al. 2014) a highly remarkable
unexpected feature under such (ultra)oligotrophic prevailing conditions that
deserves further studies. Potential for nitrogen fixation (i.e. presence of nifH genes)
was also detected in the biofilms (Vila-Costa et al. 2014). Altogether, epilithic
biofilms from mountain lakes and streams could hold a hotspot of microbial
diversity, very rich in poorly known microbial species. The different taxa are
substantially different from the bacterioplankton species and from previously
reported gene sequences in databases, adding relevant spatial heterogeneity for the
microorganisms in these environments.
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7.3.2 Archaea

Archaea are commonly present in freshwater plankton, but most have remained
unseen to aquatic ecologists and limnologists. For many years, archaea strains
available in the laboratory were restricted to methanogens and microorganisms
adapted to extreme temperature, pH and salinity. Apparently, the archaeal metabolic
diversity and ecological distribution appeared more limited than their bacterial
counterparts. In the most recent years, the environmental ribosomal RNA surveys
unveiled Archaea as ubiquitous in freshwaters. Most of them but methanogens are
distantly related to any laboratory strain, and there is ample room for new dis-
coveries related to archaea and cold water habitats in lakes (Auguet et al. 2010).
Curiously, freshwater archaeal richness and diversity appeared higher than in other
biomes such as the oceans and soils after a meta-analysis of globally distributed
clone libraries of the 16S rRNA gene (Auguet et al. 2010).

In the Pyrenean high mountain lakes, archaea are widespread and diverse. Archaea
could be detected in 90% of surface waters in a large dataset of lakes examined
(n = 313), with relative abundances generally up to 10% of the bacterioplankton
sequences (Ortiz-Alvarez and Casamayor 2016). Alpine archaea belong to 13 dif-
ferent lineages (Fig. 7.9), with Pacearchaeota and Woesearchaeota as the most
common groups, followed by Micrarchaeota—Diapherotrites (Euryarchaecota MEG
cluster), Methanogens, Thermoplasmata and planktonic AOA (ammonia-oxidising
Thaumarchaeota). Minor groups are related to the SM1K20 cluster, Aenigmarchaeota
(Euryarchaeota DSEG cluster), MCG (Miscellaneous Crenarchaeotic Group, cur-
rently Bathyarcheota) and soil AOA. In subsurface and bottom waters of deeper lakes,
accumulations of AOA and Aenigmarchaeota are however detected (Auguet et al.
2012; Restrepo-Ortiz and Casamayor 2013). This extensive study in the Pyrenean
lacustrine district unveiled the environmental preferences and habitat breadth for the
different lineages. The species with wide niche breadth, i.e. generalists, were related to
methanogens and Aenigmarchaeota, whereas the most specialists were
Thermoplasmata, Micrarchaeota and AOA. Pacearchaeota and Woesearchaeota, the
most abundant and widespread taxa, showed intermediate values (Ortiz-Alvarez and
Casamayor 2016).

The metabolic potential of most lacustrine archaea and the impact in freshwater
biogeochemical cycles are largely unknown. In some cases, the biogeochemical
activities of Archaea can be environmentally traced by the study of functional genes
coding for reactive enzymes such as the ammonia monooxygenase (Amo) present in
AOA (Fernandez-Guerra and Casamayor 2012). The Amo plays a fundamental role
in the interconnection between N fixation and N losses, catalysing the oxidisation of
NH,* to NO, ™. Nitrification helps to remove excessive ammonium nitrogen and
prevent lakes from eutrophication. Thus, increasing evidence suggests that Archaea
may play a significant role in ammonia oxidation in freshwaters in general, and
specifically in alpine lakes with submerged vegetation (Vila-Costa et al. 2016). In
fact, the interaction between microbial ecology and macrophytes ecology determines
the ecosystem-level denitrification and the submerged vegetation landscape has a
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Fig. 7.9 Archaeal lineages found in the Pyrenean lakes data set within the TACK, DPANN and
Euryarchaeota superphyla. From Ortiz-Alvarez and Casamayor (2016) with kind permission from
John Wiley & Sons, Inc.

major role in creating heterogeneity within the lakes that promotes microbial
diversity (Vila-Costa et al. 2016). A symbiotic or parasitic lifestyle even with
Bacteria has been suggested for Pacearchaeota and Woesearchaeota, probably
related to small genomes sizes and limited metabolic capabilities (Spang et al. 2015;
Ortiz-Alvarez and Casamayor 2016) but the gap of knowledge is certainly large.
The comparison of PDs for the whole archaeal assemblage and the AOA of
Pyrenean lakes with globally distributed seas and soils unveiled again a phyloge-
netically rich freshwater assemblage in the Pyrenees, approximately twofold higher
than in other biomes (Fig. 7.10). The regional diversity of AOA in the Pyrenees is
of identical magnitude that the diversity globally observed in marine and soil
habitats (amoA gene phylogenetic diversity by clone libraries). Apparently,
Pyrenean lakes promote the growth of very diverse and distantly related archaeal
communities probably because of the specific combination of persistently
cold (ultra)oligotrophic waters, highly diluted and isolated water bodies, and
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heterogeneous landscape. High mountain lakes are therefore natural laboratories of
great interest to improve the current knowledge of archaeal biology and ecology,
but perturbations in the trophic status and dissolved organic matter content may
induce substantial changes in the archaeal community composition (Auguet and
Casamayor 2013). Field experimentation should confirm whether or not warming
and eutrophication are major threats for such idiosyncratic assemblages.

7.3.3 Protists and Fungi

Microeukaryotes are essential components of microbial food webs, and morpho-
logical criteria have been traditionally used to tell apart the different species and to
successfully study the biology and ecology of the different taxa (e.g. diatoms,
cryptophytes, chrysophytes, among others). Inconspicuous forms usually of the
smallest sizes are however abundant and difficult to study because the cells lack
morphological features for identification. Microscopic eukaryotes constitute much
of the genetic diversity within the domain Eukarya and the development of genetic
approaches mostly based on the 18S rRNA gene sequencing have revealed new
previously undescribed clades and large diversity than expected present in nearly all
the Eukarya lineages. As it occurs with their prokaryotic counterparts, most of them
are uncultivable, but new molecular approaches combined with high-throughput
sequencing technologies and bioinformatics analyses provide for the first time the
possibility for detailed species inventories, although not free of limitations and
biases (e.g. Stoeck et al. 2014; Triad6-Margarit and Casamayor 2012). More
accurate preliminary estimations on how many different eukaryotic species exist, on
their functions, and on the environments with high and low microbial eukaryotic
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diversity can be obtained by comparison of both traditional and molecular
technologies.

In a preliminary study of 11 selected high mountain Pyrenean lakes, the
microeukaryotes major taxa found belonged to 9 high-rank taxonomic groups and
26 eukaryal classes. Predominant groups, both in abundance and in occurrence,
were Chrysophyceae, Cryptophyta, uncultured Alveolata, pennate diatoms of the
class Fragilariophyceae, Chlorophyceae, Dinophyceae and Fungi of the
Chytridiomycota clade among others (Triad6-Margarit and Casamayor 2012) with
most of the OTUs found exclusively affiliated to clusters formed by uncultured
microorganisms. The genetic diversity within the Cryptophyta and Chlorophyceae
was low and these groups also have the highest relatedness to cultured species.
Cryptophyta contained the OTUs with the highest ubiquity in the dataset, but in
general, most of the microeukaryote OTUs (>75% of them) were found at only one
lake, highlighting the high potential of the whole Pyrenean lacustrine district to
contain a high number of new microeukaryotes taxa. Overall, this study and a recent
study in the Alps and Himalayan mountains (Kammerlander et al. 2015) unveiled
the high mountain lakes habitat as an important biodiversity reservoir of genetically
rich Stramenopiles (mostly Chrysophyceae), Alveolata (Ciliophora) and
Opisthokonta (Fungi). A comparison with the community composition of marine
and freshwater molecular samples (Fig. 7.11) shows the consistent dominance of
Chrysophyceae in high-altitude lakes and Artic lakes (Charvet et al. 2012). Overall,
Chrysophyceae were more widely distributed in lakes with high oligotrophic
conditions. Trophic status modulates the changes in freshwater eukaryote com-
munity composition, and eutrophic lakes are less species-rich. Perturbation such as
higher availability of reactive nitrogen introduced by atmospheric deposition may
also change the community structure of the most sensible species (Kammerlander
et al. 2015). Thus, preserving the cold and (ultra)oligotrophic characteristics of the
high mountain lakes environment may be of great interest for the study of the
ecology and evolution of such idiosyncratic protists but, again, field experimenta-
tion should be carried out to confirm these findings.

In fact, the genetic novelty level after a GenBank database search (Triad6-
Margarit and Casamayor 2012) showed that many of the 18S rRNA gene sequences
recovered in the Pyrenean survey were below the species-level cut-off most widely
accepted for microeukaryotes (i.e. 98% identity, Caron et al. 2009). Mostly in the
case of Rhizaria-Cercomonads, a set of small (about 10 pm) free-living hetero-
trophic flagellates difficult to identify under the microscope for species identity, for
which c. 90% of the sequences would be new species, and Stramenopiles-
Chrysophyceae with 30-40% of the sequences potentially as new species.
Conversely, Pyrenean Cryptophyta and Chlorophyceae showed very low genetic
novelty (<3% and <5% of new species, respectively). Other taxa with substantial
novelty were found within the Opisthokonta (Fungi). Fungi have been invoked as a
target group to develop a microbial perspective on conservation biology because
both it is important by itself and the fact that fungi biodiversity and their ecosystems
roles can benefit conservation in general (Griffith 2012; Heilmann-Clausen et al.
2015).
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7.4 Towards a Microbial Conservation Perspective
in High Mountain Lakes

Microorganisms are fundamental components to maintain the ecological integrity of
any ecosystem but the exercise to define challenges and strategies (if needed) for
microbial diversity conservation have only been seldom considered. Through the
detailed studies carried out in the past years in the Aigiiestortes i Estany de Sant
Maurici National Park and recent few works available in the literature from other
high mountain lakes districts such as the Alps, Himalayas and the western moun-
tains of North America mentioned above, it arises that high mountain lakes hold a
high microbial phylogenetic uniqueness and are reservoirs of large evolutionary
potential. Microbes are therefore an important part of the biological richness of
these environments that should be considered as a fundamental component of the
natural heritage. However, we are in the very beginning for understanding micro-
bial tolerance to different environmental conditions and how such underappreciated
microbiota will respond to stresses and disturbances brought by the global change.
How is the potentiality of survival and dispersal abilities for the different species,
and whether or not the distribution of a single microbial population is restricted by
the interactions established with other biological entities are also mostly unknown.
Despite the advent of laboratory-friendly molecular methods and approaches, this
incomplete knowledge and the lack in databases of enough microbial biogeo-
graphical studies of the high mountain realm to compare with, strongly limits the
scientifically informed advice microbial ecologists can provide to managers dealing
with the challenges for conservation of the whole high mountain landscape. Our
basic knowledge of the biology and ecology of microorganisms will only improve
after intensive inventories and worldwide-distributed field studies (Cotterill et al.
2007).

Whether or not there is any worry for microbes conservation in the high
mountain ecosystem (and, in fact, in any other ecosystem) is yet a controversial and
difficult to answer question, but global-scale warming and eutrophication may
jeopardise the most idiosyncratic microbial populations that found in these areas the
most appropriate conditions to grow. Conservation biology perspectives that rely
mostly on habitat conservation apply very well for microorganisms. The microbial
world may also nicely merge the compositionalist (i.e. entity-oriented through the
lens of evolutionary ecology) and the functionalist (i.e. process-oriented through the
lens of ecosystem ecology) views on conservation biology (Callicott et al. 1999).
Conservation biology main concepts such as species, extinction, biotic interactions
and management are however difficult to apply or poorly explored for microbes
in situ. As mentioned above, microbial ecologists have managed somehow to sort
out the problem of the species definition using either an operational and pragmatic
biodiversity unit or phylogenetic approaches. Now they can sort out species rich
and poor environments and explore how is the diversity of microbial life distributed
around the planet and the relationships between microbial diversity, ecosystem
health and biotic interactions (Faust and Raes 2012). The general concept that
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biological diversity is threatened with extinction when an element is rare or when it
is in decline do not fit very well for the microbial world for several reasons. For
instance, the presence of resting or dormant life forms in the rare microbial bio-
sphere with the potential to rapid response to environmental changes and to become
an important member of the community. And also the low probability of local
extinction because bacteria do not need to find a partner to reproduce and can
remain viable in the rare biosphere for very long periods. Finally, the apparently
high connectivity among ecosystems, in general, may provide continuous species
transfers although there is a lack of experimental information on dispersal and
extinction rates in the context of conservation. Airborne supply of species from
adjacent or remote ecosystems to alpine areas (Hervas and Casamayor 2009;
Hervas et al. 2009; Barberan et al. 2014b) may circumvent such extinction through
global-scale dynamics, high dispersibility and high speciation in the local com-
munities (Barberan et al. 2014a).

Fortunately, microbial ecologists and theoretical ecologists are now analysing in
parallel large temporal datasets of microbial species using stochastic community
assembly models and establishing distinctive extinction—colonisation signatures at
the microbial taxa level. The concept of “colonisation” in this context is understood
as the ability of a particular microbial taxon to appear within the most abundant
members of the community, whereas “extinction” would be the process to fall into
the rare biosphere and become undetectable in the best case. The method identifies
for the first time those microbial taxa with an ephemeral dynamic (higher coloni-
sation and higher extinction rates), and those that are more stable (lower coloni-
sation, lower extinction) and it is a promising approach to applying a closer
conservation view on both microbial populations and microbial habitats with a
more dynamic perspective (Jiménez-Ontiveros et al. 2017). The inadequacy of
knowledge on the microbial world needs the development of major educational
programs (Barberan et al. 2016) with emphasis on the engagement of ecosystems
managers and citizens to better understand the whole picture of the biosphere and
the key role of microorganisms within it. Criteria such as microbial species rich-
ness, phylogenetic diversity, exclusive microbial species occurrences and the
microbial conservation value of a habitat, are now available to support environ-
mental managers and lawyer decisions, and to citizens and stakeholders in general.
Examples of threatened areas of high microbial interest in which efforts should be
more intense to preserve their biodiversity are now available (e.g. Casamayor et al.
2013). Disturbance and loss of habitats or massive habitat change by anthropogenic
activities may indeed threaten microbes and led to local extinction as frequently as
in macroorganisms. Ecosystem management in alpine areas should promote to
maintain spots of habitat heterogeneity within the landscape matrix between lakes
and within the lake to retain such phylogenetically rich and diverse natural heritage.
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