
drones

Article

Efficient Drone-Based Rare Plant Monitoring Using a Species
Distribution Model and AI-Based Object Detection

William Reckling 1,2,* , Helena Mitasova 1,2 , Karl Wegmann 1,2 , Gary Kauffman 3 and Rebekah Reid 4

����������
�������

Citation: Reckling, W.; Mitasova, H.;

Wegmann, K.; Kauffman, G.; Reid, R.

Efficient Drone-Based Rare Plant

Monitoring Using a Species

Distribution Model and AI-Based

Object Detection. Drones 2021, 5, 110.

https://doi.org/10.3390/

drones5040110

Academic Editor: Adam T. Cross

Received: 6 August 2021

Accepted: 27 September 2021

Published: 2 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Center for Geospatial Analytics, North Carolina State University, Raleigh, NC 27695, USA;
hmitaso@ncsu.edu (H.M.); karl_wegmann@ncsu.edu (K.W.)

2 Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
3 US Forest Service, Asheville, NC 28801, USA; gary.kauffman@usda.gov
4 US Fish and Wildlife Service, Asheville, NC 28801, USA; rebekah_reid@fws.gov
* Correspondence: wjreckli@ncsu.edu

Abstract: Monitoring rare plant species is used to confirm presence, assess health, and verify pop-
ulation trends. Unmanned aerial systems (UAS) are ideal tools for monitoring rare plants because
they can efficiently collect data without impacting the plant or endangering personnel. However,
UAS flight planning can be subjective, resulting in ineffective use of flight time and overcollection
of imagery. This study used a Maxent machine-learning predictive model to create targeted flight
areas to monitor Geum radiatum, an endangered plant endemic to the Blue Ridge Mountains in North
Carolina. The Maxent model was developed with ten environmental layers as predictors and known
plant locations as training data. UAS flight areas were derived from the resulting probability raster as
isolines delineated from a probability threshold based on flight parameters. Visual analysis of UAS
imagery verified the locations of 33 known plants and discovered four previously undocumented
occurrences. Semi-automated detection of plant species was explored using a neural network object
detector. Although the approach was successful in detecting plants in on-ground images, no plants
were identified in the UAS aerial imagery, indicating that further improvements are needed in both
data acquisition and computer vision techniques. Despite this limitation, the presented research pro-
vides a data-driven approach to plan targeted UAS flight areas from predictive modeling, improving
UAS data collection for rare plant monitoring.

Keywords: UAS; flight planning; orthomosaic; species distribution modeling; endangered species;
Geum Radiatum; Blue Ridge Mountains; object detection; machine learning; cliff mapping

1. Introduction

Accurately monitoring rare plant populations is critical to identifying threats to occur-
rences and establishing long-term population trends. Monitoring is the repeated process of
collecting and analyzing data about a species to evaluate progress towards a management
objective [1,2]. In the United States, monitoring is mandated by the U.S. Congress, the
federal Bureau of Land Management, and the individual States. Federal regulations such
as The Endangered Species Act, National Environmental Policy Act, and Federal Land
Policy Act outline the steps to protect and recover endangered species. For example, in
North Carolina, the State Endangered Species Act directs officials to bring populations of
native species in balance with their habitat and then maintain them to the point at which
the measures are no longer necessary. The methods include resource management activities
such as research, census, habitat protection, and species restoration to unoccupied parts of
the historic range [3].

To fulfill the monitoring mandates, conservation biologists need to identify plant
populations and conduct long-term demographic studies as efficiently as possible. These
studies rely on field observations from personnel with varying skill levels. As a result,
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differences in detection among observers may occur, and population sizes might be incom-
plete or underestimated. A miscount of plants in a census can lead to biased population
health and extent estimates [1].

Rare plants are often located in hard-to-access areas that may pose challenges for
conducting detailed surveys (e.g., cliffs). Traditional ground-based monitoring methods
can be resource-intensive and dangerous when performed in overgrown, rough, or steep
terrain [4]. Unmanned aerial systems (UAS) provide powerful tools for monitoring rare
plants with little inherent risk to personnel or the species being monitored [5]. It has been
demonstrated that UAS can cost-effectively collect detailed data in rugged alpine and cliff
environments [6–10]. UAS have been used for various conservation purposes, including
law enforcement, disaster response, environmental monitoring, and management [11].
High-resolution photographs and 3D models generated from UAS imagery have been used
to identify plant locations, measure plant distribution, and gather data on their habitat [4].

However, planning UAS flight paths is somewhat subjective and can result in ineffi-
cient usage of limited flight time or overcollection of data [12]. There are examples of UAS
flight preplanning to search for poachers [12] and to optimize imagery/data collection for
tree structure monitoring [13]. Additionally, probability mapping has been used to plan
UAS flight paths for search and rescue [14–16] and even as a method to direct autonomous
underwater vehicles [17].

Although species distribution modeling and UAS plant monitoring have been individ-
ually used for species conservation, we present a method that combines them to improve
the efficiency of UAS-based plant monitoring and facilitate the potential discovery of
unknown plant locations. We first outline the general workflow for the proposed approach
and then demonstrate its implementation and application for monitoring the rare plant
species, Geum radiatum, to a site in the Blue Ridge Mountains in North Carolina. Next,
we describe the machine-learning predictive model used to create UAS flight areas with a
high probability of these species’ locations and evaluate which predictors are significant
variables in determining these locations. Finally, we collect and analyze the UAS data
in one of the high probability areas and assess whether the collected UAS imagery is of
sufficient detail to identify rare plants at the test location. We also discuss the potential for
using object detection and feature extraction to automate the monitoring process further.

2. Materials and Methods

To target UAS monitoring of rare plants in challenging-to-inaccessible locations and
acquire UAS data with a high probability of finding new plant locations, we propose a
general approach/workflow that combines machine learning with UAS flight planning
designed explicitly for a studied plant (Figure 1). We also discuss the potential for using
object detection to further automate the monitoring process. Given the plant species and a
general region where it should be monitored, environmental data layers were identified and
derived, which characterize the ecosystem favorable for a plant at a study site. Using these
layers and known plant locations, a predictive model was developed to map plant location
probabilities. Species distribution is modeled with a maximum entropy machine-learning
method implemented in Maxent [18]. A probability threshold is selected to delineate the
flight area for targeted monitoring based on flight parameters (height, overlap, ground
sample distance, pattern) and UAS endurance (battery and weather). Topographic and
environmental conditions at the selected areas are analyzed, and the flight pattern design
is optimized for the specific location. If the area is in complex or steep topography, daytime
shadow evolution is computed to identify the time of day to fly with minimum shadowing
effect. The acquired data are then processed, and an orthomosaic, point cloud, and digital
surface model (DSM) are derived. These provide input for identifying target plant locations
using visual analysis or semi-automated approaches depending on species properties and
the mapped area environment.
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Figure 1. Diagram of targeted UAS monitoring workflow.

The Blue Ridge Mountains in North Carolina and Geum radiatum, a rare plant species
(Figure 2), were selected to develop and test the proposed methodology and evaluate
the feasibility of the proposed approach. The high mountains and cliff faces provide a
challenging environment to conduct plant monitoring.
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Figure 2. Blooming Geum radiatum plant (kidney-shaped leaves with yellow flowers) photographed
on a narrow, rocky ledge at Roan Mountain.

2.1. Study Species

Geum radiatum, commonly known as Spreading Avens, is a federally listed endangered
plant species [19] native to the Blue Ridge Mountains of North Carolina and Tennessee [20]
(Figure 2). Geum radiatum is found on rocky outcrops and bluffs at elevations ranging from 1400
to 1911 m [20]. It is a rhizomatous perennial herb in the rose family with 7–15 cm wide leaves, up
to 2.5 cm bright yellow flowers [20–22], and a patch of rosettes covers around 1.7 m2 [23]. This
species requires direct sunlight for part of the day with a west/southwest to north/northeast
facing aspect [19]. Geum radiatum grows in shallow, acidic soils that range from moderately poorly
drained to excessively drained. The specimens identified in this study on the cliff face exist in the
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shallowest of excessively drained soil conditions; however, the flow of moisture along rock crack
surfaces likely aids in bringing water to the plants during dry intervals. [20]. The soils remain
damp from high-elevation fog which also prevents solar evaporation [19]. During the last glacial
maximum, Geum radiatum was part of a more widespread alpine community. Geum radiatum
likely experienced a shrinking habitat as the climate warmed and vegetation zones moved
northward [24,25]. Niche habitats offer protection for rare plants during climatic fluctuations, and
this species has been able to survive on the cool cliffs of the Blue Ridge Mountains [26,27]. Suitable
habitats for Geum radiatum are expected to retract further because of future climate change [26].
Recreational hikers, climbers, and development pose threats to the species. Efforts to barricade
sites and educate the public have been implemented as protection measures [19]. There are 15
known Geum radiatum locations, and 11 occur on publicly owned lands [28]. Populations may
be undercounted because of inconsistent monitoring methods among personnel [28], and access
to the plants often requires skilled rock climbers and equipment [20]. The species was federally
listed as endangered on 5 April 1990 [19].

The 1993 recovery plan for Geum radiatum outlines five actions needed to recover
the species, two of which apply to this study; “Survey suitable habitat for additional
populations” and “monitor and protect existing populations” [19]. The species recovery
plan further describes a systematic search for additional populations that should begin
with an analysis of aerial photos and topographic maps to identify habitat and “develop
a priority list of sites to search” [19] (p. 5). Additionally, the document recommends
long-term demographic studies where the plots are visited annually and “the locations of
individual plants should be mapped or photographed” [19] (p. 21). A demographic study
conducted annually in July between 2003 to the present involves rappelling to sites along
cliffs, marking plant locations, and recording descriptors. Plant locations were recorded
in horizontal coordinates (e.g., UTM easting, northing) and written descriptions refer-
enced to the cliffs they were found growing on [29]. The emergence of UAS technologies
and machine-learning workflows provides technological solutions and opportunities to
improve the documentation and monitoring of known occurrences and the prospect for
additional cliff-born enclaves of Geum radiatum.

2.2. Species Distribution Modeling for Flight Planning

To target the UAS mapping at locations with the highest probability of finding a
target plant species, a maximum entropy machine-learning algorithm was used for mod-
eling species geographic distributions [18] that is available in Maxent 3.41 [30] under
an open-source MIT license [31]. Species distribution modeling (SDM) is used in rare
plant management applications, highlighting areas for targeted searches or restoration
efforts [32]. Maxent has been cited as the most widely used SDM method [31,33,34]. It
has performed well against other SDM methods, including models with presence/absence
data (regression, random tree) [35]. Maxent works well with limited training data and can
be run with as few as 5 point locations. Additionally, the regularization method in the
model lessens the need to remove or preprocess correlated environmental variables [36,37].
Maxent requires two sets of input data: species presence locations and environmental
layers [31]. Species presence locations are training data for the model given by geographic
coordinates of known species occurrences. Environmental layers are predictors for the
model represented as raster grids of environmental variables [18,38].

2.2.1. Species Presence Locations

The North Carolina Natural Heritage Program (NHP) maintains an inventory of rare
plants, animals, and communities in North Carolina. Specific occurrences of these groups
are known as elements and are stored as georeferenced polygons in a natural heritage
element occurrences shapefile [39] which is updated on a quarterly basis. QGIS 2.18.7 [40]
was used to extract Geum radiatum polygons from the inventory resulting in 44 polygons
ranging in sizes from 40 m2 to 2.7 km2 and a median size of 3278 m2. The extracted Geum
radiatum polygons were converted to centroids within polygons to approximate plant
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locations for model training and then reprojected to the geographic WGS84 coordinates
required by Maxent (Figure 3).
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Figure 3. Example Geum radiatum species presence locations from the N.C. Natural Heritage Program
database converted from polygons to centroids and overlain on a shaded relief. Specific location
information is purposefully not included.

2.2.2. Environmental Layers

Environmental layers, also referred to as covariates or predictors, are the independent
variables used in the SDM [36]. Ten variables were selected based on relevance to habitat
preferences described in a plant survey for Geum radiatum conducted by Massey et al. (1980)
(Table 1) and availability of data at adequate resolution. The data were acquired from
public repositories, processed into a common raster representation required by Maxent,
and clipped to the Blue Ridge ecoregion (Figure 4).

Table 1. Geum radiatum habitat preferences.

Variable Attributes

Climate Cool, cloudy, windy

Soil Clay loam, loam, sandy loam, hummus soils

Geology Rock substrates composed of muscovite and quartz schist or phyllite, biotite,
quartz diorite, granitoid gneiss, and garnet rich mica

Hydrology Moderate poorly drained to excessively drained

Topography

Cliff faces and ledges, outcropping and scattered boulders, or exposed
mountain peaks with 10% to 90% exposure. Rounded mountain tops,

bluff/cliff faces open to partly sheltered. Surface cracks and crevices serve
for placement of grass mounds and moss, which influence the surface

features. 0–90-degree slopes on W, WNW, NW, NNW, and NNE exposures

Physiography Elevation of 1400 to 2100 m
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Figure 4. Environmental layer processing steps for raster and vector data. Input raster layers were
reprojected and resampled to a common resolution of 0.22 arcsec (equivalent to approximately 6 m
resolution of the original DEM) in the WGS84 coordinate reference system. Proximity operation was
used to create a raster grid from the input vector layers at the same resolution.

Elevation [41] was available as a digital elevation model (DEM) raster layer at 20 ft
(~6 m) resolution in NAD 1983 State Plane EPSG:2264 coordinate system. It was reprojected
to 0.22 arcsec resolution (equivalent to its original resolution of ~6 m) in WGS84 EPSG:4326
coordinate system using the warp function in QGIS (Figure 4). Slope and aspect raster layers
were then derived from this DEM. A solar radiation raster representing the maximum daily
total radiation was computed from the DEM, aspect, and slope raster layers [42]. The day
of summer solstice was selected to represent maximum daily total radiation under clear
sky conditions for the longest day of the plant growing season.

Land cover [43], GAP/LANDFIRE national terrestrial ecosystems [44], and soil type and
moisture [45] were available as raster layers at 30 m, 30 m, and 10 m resolutions respectively
in NAD 1983 UTM Zone 17N EPSG:26917, NAD83 Conus Albers EPSG:5070, and USA
Contiguous Albers Equal Area Conic USGS WKID:102039 coordinate system(s). To match
the elevation data resolution and coordinate system, these layers were resampled and
reprojected to a common resolution of 0.22 arcsec in WGS84 EPSG:4326 coordinate system
using the warp function in QGIS (Figure 4). The nearest-neighbor method was used to
resample these discrete data to preserve the values and grain of the original data and to
avoid introducing new, potentially artificial values. National Hydrography Dataset line
and polygon features [46], and North Carolina road line features [47] were first reprojected
from the NC State Plane coordinate system EPSG:2264 to WGS84 EPSG:4326 and then
proximity to hydrography and proximity to roads raster layers were derived at 0.22 arcsec
resolution (equivalent to approximately 6 m).

All derived raster layers were generated in GRASS GIS 7.4.0 [48]. Each of the ten
environmental layers was then masked to the Blue Ridge ecoregion polygon boundaries [49]
(Figure 5) and exported in asci format required by Maxent with the common coordinate
reference system and identical spatial extents.
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Figure 5. Study site (red circle) located on Roan Mountain, situated within the Blue Ridge ecoregion
(blue line), in westernmost North Carolina, USA. (top-right).

2.2.3. Modeling Species Distribution

The Maxent predictive model was developed with the ten environmental layers as
predictors, and the species presence location points approximated by polygon centroids
(n = 44) as training data. The model was run for the Blue Ridge ecoregion with 5-fold cross-
validation, where 20% of the training data were withheld for each of the five model runs.
Default Maxent parameters were used, but the iterations value increased to 5000, which
allows the model sufficient iterations for the optimization algorithm to converge [50,51].
The resulting raster map shows the predicted probability that conditions are suitable for
the modeled species. The summary of model performance includes a statistical analysis of
the test omission rate and the receiver operating characteristic (ROC) curve [52]. It also
provides an analysis of variable contributions that show which predictors influence the
model the most and response curves that highlight the most important attributes within
each predictor [52].

The UAS flight areas were then derived from the probability raster as isolines with a
selected probability threshold, in our case set to 95%.

2.2.4. Flight Path Generation

A 95% probability area located on Roan Mountain (36.106292◦ N, −82.111041◦ W)
was selected to test the proposed UAS-based monitoring methodology. This area has
a well-documented Geum radiatum plant community, a launch area free from overhead
obstruction, and relatively easy access from a 1.9 km hiking trail. Roan Mountain is situated
along the border of North Carolina and Tennessee within the Pisgah (NC) and Cherokee
(TN) National Forests (Figure 5). One of the five peaks comprising Roan Mountain has
an elevation of 1910 m [53] and is one of the highest points in North Carolina [54]. The
high elevation creates a unique ecoregion that contains 47 plant species monitored by the
North Carolina Natural Heritage Program. Of these plant species, four are listed as federal
species of concern, and four are listed as endangered or threatened [39].

The 95% probability polygon covering the study site was imported into the DroneDe-
ploy flight planning web application [55] (Figure 6). The flight was programmed to be
flown in a crosshatch pattern with the auto flight mode feature. This flight mode ensures
close to nadir views by minimizing banking turns and through use of the UAS gimbal.
Although the DroneDeploy software defaults to a front and sidelap of 50% in crosshatch
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auto flight mode to limit data size, frontal and side image overlap increased to 65% to
improve feature matching [56].

Drones 2021, 5, x FOR PEER REVIEW 8 of 21 
 

gimbal. Although the DroneDeploy software defaults to a front and sidelap of 50% in 

crosshatch auto flight mode to limit data size, frontal and side image overlap increased to 

65% to improve feature matching [56]. 

 

Figure 6. Targeted flight area polygon uploaded into DroneDeploy flight planning web application. 

White points are the 95% probability polygon vertices, and the green dotted line is the crosshatch 

flight path for the UAS. This flight area polygon is within the study site shown in Figure 5. Due to 

restrictions on sharing rare plant information, the authors were asked to avoid showing exact de-

tails/locations. 

2.2.5. Time of Day Flight Planning 

Previous experience with UAS mapping in mountainous regions highlights the diffi-

culty of capturing cliff imagery without shadows [6,57]. Therefore, a shadow model was 

created for the study area to determine the best time for UAS imagery capture to minimize 

imaging areas in the shade. A GRASS GIS hourly solar insolation model was calculated 

using an available 1 m resolution LiDAR derived DEM [58] for one-hour increments. The 

output indicated a window between 12:00 p.m. and 2:00 p.m. to have the least shadow 

along the cliff face (Figure 7).  

Figure 6. Targeted flight area polygon uploaded into DroneDeploy flight planning web application.
White points are the 95% probability polygon vertices, and the green dotted line is the crosshatch
flight path for the UAS. This flight area polygon is within the study site shown in Figure 5. Due
to restrictions on sharing rare plant information, the authors were asked to avoid showing exact
details/locations.

2.2.5. Time of Day Flight Planning

Previous experience with UAS mapping in mountainous regions highlights the diffi-
culty of capturing cliff imagery without shadows [6,57]. Therefore, a shadow model was
created for the study area to determine the best time for UAS imagery capture to minimize
imaging areas in the shade. A GRASS GIS hourly solar insolation model was calculated
using an available 1 m resolution LiDAR derived DEM [58] for one-hour increments. The
output indicated a window between 12:00 p.m. and 2:00 p.m. to have the least shadow
along the cliff face (Figure 7).
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2.3. Flight Data Acquisition and Processing

Because the Roan Mountain flight area spans two National Forests and is near the
Appalachian Trail (a no-fly zone), UAS flight authorization was coordinated with the U.S.
Forest Service, U.S. Fish and Wildlife Service, and the National Park Service. Three UAS
flights were executed at the Roan Mountain study site at 1:30 p.m. on 25 July 2019, with
a DJI Phantom 4 Advanced quadcopter with a 24 mm, 20-megapixel RGB sensor. The
UAS sensor was set to 90 degrees nadir camera angle, manual focus set to infinity, and f2.8
aperture. The first two flights were flown at 30 m above the ground altitude at takeoff. As
a precautionary measure, the second flight was flown with the same parameters except for
changes to the flight pattern from a crosshatch to a linear path and an increase in overlap
to 75%. The linear flight path allowed for shorter flight duration and was only collected
as backup data. These flights were autonomously flown and controlled with the Android
DroneDeploy Flight App [59] previously configured with the targeted flight area. The third
flight was flown manually to collect photographs at a 40-degree oblique angle with the DJI
Go app [6] to collect more detailed imagery of the vertical cliff face [60]. The live video
feed and distance measurements in the DJI app were used to estimate overlap as the UAS
moved along and down the cliff face.

The high-resolution RGB aerial photography from the first and third flights was
processed in Agisoft Metashape 1.6.3 [61]. Imagery collected from the first flight was
sufficient, and the redundant second flight data set was unnecessary. The imagery was
processed with high quality and accuracy settings with mild depth filtering to eliminate
noise in the point cloud [62]. A 3D mesh and interpolated digital surface model (DSM)
were created from the point cloud. An orthomosaic was generated by rectifying the images
to the DSM. An orthomosaic, digital surface model (DSM), and point cloud were exported
for analysis in GIS software. Ground control and checkpoints were not collected or used in
the imagery processing; the steep terrain and heavy canopy made target placement and
survey unattainable.

2.4. Analysis of UAS Data for Plant Locations

The UAS aerial imagery and orthomosaics were visually analyzed to identify the
plant locations, and semi-automated detection of target plant species was explored using
computer vision.

2.4.1. Expert-Directed Visual Analysis

UAS orthomosaics have been successfully used to identify plant locations and char-
acteristics [4]. However, in a heavily forested area, detail from the source images can
be lost in the process as the orthophoto rectification process may omit canopy gaps and
smooth tree crowns [63]. Therefore, rather than inspecting the orthomosaic or individual
orthophotos, each uncorrected UAS aerial photo was visually analyzed for Geum radiatum
leaves/flowers. To help spatially locate the position of each photo, points representing the
center of the images in QGIS were created with the ImportPhotos plugin [64] (Figure 8).
The points were displayed over the orthomosaic, which facilitated the detection of plants in
their correct geographic locations. The orthomosaic was then used for digitizing polygon
outlines of the known and previously unknown Geum radiatum plant patches in a GIS.
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Figure 8. Orthomosaic with the point locations of each UAS aerial photograph. A single aerial photo
containing a Geum radiatum plant is shown with its associated point.

2.4.2. Semi-Automated Detection with Computer Vision

Computer vision methods have been successfully implemented to identify, count
and capture the morphological features of plants [65]. An approach to semi-automated
identification of plants was explored with a YOLO (You Only Look Once) neural network
object detector. The Visual Object Tagging Tool [66] was used to label Geum radiatum plants
in 73 photos downloaded from an internet search and taken by the authors (Figure 9).
The labels were used to train a model using the darknet neural network framework [67]
for generating custom models. This methodology was selected because of its successful
implementations in the agricultural industry and with UAS datasets [68,69]. YOLOv3 [70]
was used to explore the possibility of detecting the Geum radiatum plants on the UAS
aerial imagery.
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3. Results
3.1. Species Distribution Modeling

Maxent modeling resulted in a raster map with a probability of Geum radiatum presence
value for each cell for the entire Blue Ridge region (Figure 10). The replicate Maxent algorithms
converged after 500 to 720 iterations. The statistical analysis from the Geum radiatum Maxent run
averaged over five replicates shows an excellent match between the predicted omission rate and
test omission rate on test samples (see Appendix A, Figure A1). The receiver operating curve
(ROC) evaluation shows predictions regarding the area under the curve (AUC). AUC measures
the probability that a random presence site was ranked higher than a random absence site. The
AUC for Geum radiatum was 0.997, and the standard deviation was 0.001, which demonstrated
a high accuracy [51] (see Appendix A, Figure A2).
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Figure 10. Maxent probability raster for the entire Blue Ridge region. Because of the rareness of the
habitat, the high probability areas are hard to differentiate at this scale. Darker colors indicate higher
probability areas that are suitable for Geum radiatum.

The Maxent summary output suggested elevation, soils, and distance from water
were the most important variables overall, contributing to 90% of the model solution (see
Appendix A, Table A1). Elevation represented the most critical predictor in explaining
species distribution for Geum radiatum. Analysis of the response curves indicated elevations
over 1800 m, Balsam sandy loam and Wayah–Burton complex soils, increasing distance
from hydrographic features, high solar insolation values, and north-northwest aspects are
the most important attributes within each predictor (see Appendix A, Figure A3).

3.2. Targeted Flight Plan and UAS Data

Isolines generated from the predictive model for the 230,955 km2 Blue Ridge ecoregion
resulted in 173 polygons totaling 1840 km2 with a 95% probability that environmental
conditions are suitable for Geum radiatum (Figure 11). The high probability polygons were
in high-elevation areas with bare cliffs and forested areas in steep terrain.
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Figure 11. A subregion of the entire modeled Blue Ridge region zoomed to the Roan Mountain
study site. Darker colors indicate higher probability areas that are suitable for Geum radiatum. The
white line used for the flight plan represents an area with at least 95% probability that environmental
conditions are suitable for Geum radiatum.

Three flights executed at the selected site at Roan Mountain included the 95% probabil-
ity polygon with an overall flight time of 53 min. A total of 814 photos were collected, 596
on the first flight, 145 on the second, and 73 on the third. An orthomosaic with 1.67 cm/px
ground resolution was generated from the combined nadir aerials and oblique cliff pho-
tography. The resolution of the DSM was 3.54 cm per pixel, and the colorized point cloud
contained 232 million points at a density of 2605 ppm2. These resolutions provided a high
level of detail, more than sufficient for visual identification of the unique Geum radiatum leaf
shape, color, and bright yellow blooms, where a single rosette measures around 6.5 cm2

and a patch of rosettes can cover 1.7 m2 [23].

3.3. Analysis of Geum Radiatum Locations
3.3.1. Results of Visual Analysis

The location of 33 known plants was verified by visual analysis of acquired UAS
images, and coordinates of their reference points were digitized on the georeferenced
orthomosaic. This allowed us to record locations of individual plants at much higher
accuracy than the previously known, approximate NHP polygon.

Four new plants were discovered within the 95% probability flight area. Three were
located on the cliff face just outside of the NHP polygons. One, especially large plant, was
found within an atypical, forested area (Figures 12 and 13). Although this plant is within a
NHP polygon area, it was previously undocumented. Additionally, a flowering plant in a
shaded canopy gap was identified as a potential Geum radiatum but remained a probable
location to investigate (Figures 12 and 14).
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Figure 12. Previously known and newly identified Geum radiatum plant locations digitized from
orthomosaic. Of the newly discovered plants, three plants were found on the cliff face, one was
found in the canopy gap, and one probable plant location to investigate. Locations of the previously
known plants within the polygons were recorded, and new plants were identified.
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Figure 13. One previously unknown location of Geum radiatum in a forested area. Nadir aerial photo
from UAS (a); and oblique aerial photo (b).
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3.3.2. Computer Vision

First, Geum radiatum photos were acquired with the UAS camera for testing purposes
as it was being held by hand. The YOLOv3 object detection program, trained for Geum
radiatum, was able to identify the plant in these photos, even among other leaves, and with
varying light conditions (Figure 15).
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Figure 15. Results from the YOLOv3 model for two photos acquired by UAS camera on the ground
with Geum radiatum shown by green object detection boxes, including the confidence level of
the detection.

However, it was impossible to detect and identify Geum radiatum plants in any of
the 814 nadir and oblique UAS photos collected in the project using the object detection
program. Images taken at the ground level had leaf diameters captured by approximately
300 pixels (Figure 2). In contrast, the aerial images had leaf diameters represented by
approximately 10 pixels (Figure 14) which were insufficient to capture the leaf shape with
the detail needed for automated detection.

4. Discussion

This research highlights the use of machine learning to plan targeted UAS flights
for rare plant monitoring, demonstrated by a case study mapping Geum radiatum in the
Blue Ridge Mountains ecoregion. To our knowledge, this is the first study that has used a
species distribution model to create targeted UAS flight areas to map locations of rare and
endangered plant species. Targeting the UAS flights is important because the overcollection
of data over broad areas increases battery power consumption. Battery capacity and
discharge rate are the primary factors affecting the duration of UAS missions. Having
multiple batteries at hand or flying at higher altitudes to capture more area per image are
not ideal solutions because batteries are heavy to transport to remote field sites, and flying
at higher altitudes would decrease the detail of the imagery such that the mapped plant
might not be identified. Additionally, targeted flight areas allow for faster data collection so
that changing weather and lighting conditions do not affect the final imagery products [6].

Species distribution modeling using Maxent identified high probability areas with
suitable conditions for Geum radiatum with a high level of certainty. Still, the 95% probability
polygon included non-bluff areas where Geum radiatum is not typically found. Investigat-
ing the variable contributions to the model shows that soils and elevation had the most
influence on the result. However, these two predictors are not directly associated with bluff
areas. Although the 95% probability polygon contains unlikely habitat for the plant, there
was one probable plant location to investigate in the atypical area. Additional environ-
mental variables, such as geology, landforms, and vegetation structure from LiDAR [71]
or UAS orthomosaic [72], could improve the Maxent results. For example, one confirmed
Geum radiatum plant and another possible plant are in gaps in the forest canopy. Canopy
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gaps allow enough light for plant survival as well as for identification in UAS imagery.
Multiple points from within the NHP polygons or precise Geum radiatum locations mapped
from the orthomosaic can be used as training data to improve flight planning over time
and potentially discover previously unknown individuals.

The selection of the probability threshold used to derive flight area depends on the
goal of the mapping and available resources. It is possible plants might be located at
lower probability thresholds outside of the 95% probability boundary used in this study.
Moreover, to further validate the predictive model results, it would be useful to fly zero to
very low probability areas to confirm that both conditions for presence and absence of the
modeled species are adequately represented by the model.

Preparing environmental data for Maxent data can introduce uncertainties from
resampling that need to be handled appropriately. Five of the six most important variables
contributing to the model were derived from the 6 m elevation dataset, and no resampling
was necessary. The coarser resolution data, such as landcover, was not an influencing
factor at the 30 m resolution indicating that the resolution of this dataset was too low
to play a role in the predictive modeling or the landcover indeed does not influence the
distribution of the studied plant species. The impact of the landcover variable could be
different and potentially further improve the modeling results if this layer were derived
from higher resolution data such as 1 m resolution National Agriculture Imagery Program
(NAIP) or UAS orthomosaics. However, we believe that the modeling results were more
than adequate for flight planning, where our focus was on outlining a mapping area rather
than the precise location of the plants.

Although the object detection approach successfully detected plants in on-ground
images, it was not possible to identify occurrences of Geum radiatum from UAS collected
imagery. The model failed because it was trained with plant images captured at close
range or ground level, with resolutions approximately 30 times greater than the aerial
UAS imagery. We anticipate that object detection performance will improve with train-
ing using UAS imagery collected at similar distances and angles [69] or with different,
higher-resolution, or multispectral sensors. Future work is planned to label and train
an object detection model using UAS imagery and plant locations collected during this
project to analyze the images taken in subsequent flights. In addition, we will collect
images under varying environmental conditions and at specific heights to determine the
threshold at which the plant cannot be detected anymore. Finally, experimentation with an
object detection method UAS-YOLO, specifically designed to detect small objects in UAS
imagery [69], is underway.

Ground control points (GCPs) and checkpoints are important for processing drone
imagery and estimating accuracy. We brought global navigation satellite system (GNSS)
survey equipment and aerial targets to Roan Mountain on flight days, but the extreme relief
and heavy tree cover made placement of GCPs impractical. Positional information from
the onboard UAS GNSS receivers was used in processing with sufficient results. The only
photo identifiable feature in the ortho imagery is the platform used for flight operations.
Width measurements between the platform in the UAS orthomosaic and NC OneMap
imagery [73] were within 3 cm of each other. Measurements from the platform corners
showed a horizontal accuracy under 1.5 m. A real-time kinematic (RTK) or post-processed
kinematic (PPK) capable UAS can mitigate positional accuracy problems. However, these
types of UAS are not a substitute for checkpoints to verify the accuracy of final products.
In areas where it is challenging to perform survey work, conservation organizations will
have to balance the benefits of positional accuracy with the cost of RTK UAS equipment
and GCP survey.

We selected ten environmental parameters (map layers) in the Blue Ridge region that
were relevant predictors of Geum radiatum habitat, although a total of 16 environmental
layers were created for the entire state of North Carolina as part of this work. The relevant
layers can be selected based on applicability to the species of interest. This will allow us
to scale to a larger region by applying a similar methodology to other rare or endangered
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plant species in the state. Current conservation practices can be transformed by prioritizing
monitoring areas using the continuously improving probability maps and tracking the
status of the monitored plants over time. Additionally, the monitored areas can be extended
as the process becomes more automated and the state of the entire ecosystem supporting
the rare plants can be assessed. The regional adaptation of the proposed approach would
require us to equip regional managers and their personnel with multiple drones, which
is facilitated by focusing on low-cost equipment. At the same time, the Maxent modeling
and the environmental variables can be provided as an online application. We are working
on a project similar to the one presented in this paper to identify Virginia spiraea with
UAS along waterways in the mountains of North Carolina to assist an electric utility with
regulatory compliance.

5. Conclusions

This research provides a data-driven approach to plan flight areas from predictive
modeling, which will improve UAS data collection and processing efficiencies. Using a
machine-learning predictive model, we created targeted flight plans to collect data in areas
with a high probability of a target plant. This technique reduces battery requirements and
data storage needs as well as flight and processing time. The model also offers insight
into which variables were significant in determining the monitored plant, Geum radiatum,
distribution. The UAS imagery was sufficient to identify the plants’ locations and discover
four previously unknown Geum radiatum occurrences. Of the five actions listed in the
USFWS recovery plan for Geum radiatum, this research has the potential to contribute to
two; (1) the survey of suitable habitat for additional populations and (2) monitor and
protect existing populations. Finally, the 2020 USFWS 5-year review for Geum radiatum
recommends the agency continue working with and supporting efforts to identify rare
species using UAS [28] (p. 31). This study demonstrates that UAS and machine learning
can enhance future monitoring efforts for additional rare or endangered plants.
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