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Abstract: Nowadays, emerging technologies, such as long-range transmitters, increasingly
miniaturized components for positioning, and enhanced imaging sensors, have led to an upsurge in
the availability of new ecological applications for remote sensing based on unmanned aerial vehicles
(UAVs), sometimes referred to as “drones”. In fact, structure-from-motion (SfM) photogrammetry
coupled with imagery acquired by UAVs offers a rapid and inexpensive tool to produce
high-resolution orthomosaics, giving ecologists a new way for responsive, timely, and cost-effective
monitoring of ecological processes. Here, we adopted a lightweight quadcopter as an aerial survey
tool and object-based image analysis (OBIA) workflow to demonstrate the strength of such methods
in producing very high spatial resolution maps of sensitive marine habitats. Therefore, three different
coastal environments were mapped using the autonomous flight capability of a lightweight UAV
equipped with a fully stabilized consumer-grade RGB digital camera. In particular we investigated
a Posidonia oceanica seagrass meadow, a rocky coast with nurseries for juvenile fish, and two sandy
areas showing biogenic reefs of Sabelleria alveolata. We adopted, for the first time, UAV-based raster
thematic maps of these key coastal habitats, produced after OBIA classification, as a new method for
fine-scale, low-cost, and time saving characterization of sensitive marine environments which may
lead to a more effective and efficient monitoring and management of natural resources.

Keywords: unmanned aerial systems/vehicles (UAS/UAV); marine coastal habitats; mapping;
object-based image analysis (OBIA); image classification; structure from Motion (SfM); aerial mapping;
Mediterranean Sea

1. Introduction

1.1. General Overview and Aims of the Work

Over the past decade, there has been a growing interest in the use of small unmanned aerial
systems or vehicles (UAS/UAVs), as new tools for remote sensing. In fact, they have been widely
employed to assess landscape changes in a rapid and cost-effective manner. Nowadays, UAV-based
imagery has become one of the most used methods for mapping vast surfaces [1–3], remote or
inaccessible areas [4,5], agriculture/crop fields [6,7], geological discontinuities [8], and for monitoring
wildlife [9–11], forests dynamics [12], rangelands [13], and impacted sites [14,15]. Conventional satellite
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sensors can provide regional- to global-scale observations and repeat time-series sampling. However,
satellite-based imagery shows some disadvantages, such as their reliance on weather conditions
(i.e., cloud contamination), high cost per scene, the revisit period (e.g., 18 days for Landsat), and the
scale of many ecological processes. However, it should be noted that recent advances in remote sensing
sensors are overcoming these limitations. In fact, clouds are not relevant for synthetic aperture radar
(SAR) [16] and the SENTINEL-1 constellation provides high reliability, improved revisit time (12 days),
geographical coverage (up to 400 km in extra wide swath mode) with high geometric (typically
20 m Level-1 product resolution) and radiometric resolutions, suitable for most applications aimed
at supporting operational applications in the priority areas of marine monitoring, land monitoring,
and emergency services [17,18]. Although the spatial resolution of satellite imagery has significantly
improved in the last decade, the data collected is still not sufficient for medium to small coastal
dynamics. Airborne-based data obtained from imaging sensors on board civilian aircraft platforms may
also be used; these can provide data for fine-scale ecological studies [19]. Airborne photography data
also reveal some operational constraints due to flight altitude and speed, expensive data acquisition,
and well-trained personnel. All these aspects can affect the possibility to use such methods, especially
when low-cost and time-saving aerial data are required.

As technological developments rapidly advance the versatility and functionality of affordable
UAVs, their potential as aerial survey tools is quickly gaining attention both for recreational
and professional uses [20], opening new possibilities for remote sensing applications using
commercial off-the-shelf instrumentation. In addition, the use of consumer-grade digital cameras
for field operations has generated a promising research avenue regarding the development of very
high-resolution digital elevation models (DEMs) and automated approaches for very high spatial
resolution imagery classification. Therefore, structure-from-motion (SfM), multiview-stereo (MVS)
algorithms, and object-based image analysis (OBIA) are becoming the methods generally proposed
when consumer-grade cameras are used on board the recent UAVs [21]. As a result, UAV technology
can address tasks otherwise poorly suited for light detection and ranging (LiDAR) systems and rigorous
ortho-photogrammetric airborne campaigns by filling some gaps regarding both the application costs
and spatial resolution.

Although widely used and recognized in the scientific community as new tools capable of provide
unprecedented scientific applications in the most diverse fields of science [19], further evaluations
regarding the utility of small UAVs are required in the field of marine ecology. Whilst in the marine
fauna context, some studies have suggested that UAVs may provide better sampling efficiency and
data quality in place of manned aircraft [20], there are currently no published studies aimed at
demonstrating their potential as a marine aerial survey tool for monitoring benthic-sensitive habitats
along Mediterranean coasts.

For this reason, in this work, we illustrate through case studies the great potential of a small
UAV coupled with SfM photogrammetry in delivering very high spatial resolution maps usable for
the identification and characterization of three sensitive coastal marine habitats: Posidonia oceanica
(P. oceanica) meadows, juvenile sparid fishes nursery grounds, and Sabellaria alveolata (S. alveolata)
biogenic reefs. In addition, we evaluate the suitability of georeferenced orthomosaics and the accuracy
of OBIA in detecting and classifying coastal features of these specific habitats. We show that, with
some limitations essentially due to optical refractive distortion effects created by the water surface,
SfM techniques applied to aerial imagery obtained with a consumer-grade drone can be used for
high-resolution mapping of sensitive marine habitats in temperate environments.

1.2. Background

Low-cost aerial platforms have been used in a broad range of ecological research projects
in the field of environmental sciences such as: assessment of vegetation dynamics and forests
biodiversity [22–24], wildlife research and management [25,26], river habitat mapping [27,28], and
ecosystem processes [29]. These research projects dealing with remote sensing data, derived from
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low-altitude aerial photography, have been successfully classified through the OBIA approach
because of its suitability for very high spatial resolution imagery (<10 cm/pixels), the ability to
delineate ecologically meaningful image objects, and to derive spectral, spatial, and contextual
features from these objects [30–32]. However, only few studies [33–35] have evaluated the accuracy
of OBIA methods in classifying UAV-based remotely-sensed data of shallow marine environments.
Pixel-based remote sensing classifiers (e.g., supervised classifiers) using spectral information are
used with medium- and low-resolution imagery and are often unsuitable for classifying very high
spatial resolution data. In fact, as spatial resolution becomes finer, variance in observed spectral
values within landcover classes increases making spectral separation between them more difficult,
resulting in a lower overall classification accuracy [36]. Object-based image analysis methods differ
from traditional pixel-based classification methods (i.e., maximum likelihood classifiers) because
these techniques group similar, neighboring pixels into distinct image objects within designated
parameters [37]. A typical OBIA workflow involves firstly image segmentation (sequence of processes
that are executed in a defined order including segmentation parameters that create meaningful objects
made up of multiple neighbouring pixels sharing similar spectral values) and secondly classification
of the segmented data. The application of such methodology aimed at classifying also underwater
cover classes may become an important tool along shallow coastal environments because it could
detect in a rapid, accurate and cost-effective way the health status as well as the impacts acting
on these habitats. In fact, coastal habitats are typically the most affected by human activities [38]
and therefore require specific measures for their monitoring and protection. For instance, P. oceanica
(Linnaeus) Delile meadows are experiencing a steep decline throughout the Mediterranean Sea due
to anthropogenic disturbances such as illegal trawling, fish farming, construction of marinas, and
mechanical damage caused by boat anchoring or moorings [39–41]. Likewise, juvenile sparid fish
(Diplodus several species, spp.) nursery grounds are key marine habitats that should be protected
because their availability can affect the distribution and abundance of juvenile fishes and, therefore,
determining the renewal of populations and the structure of adult assemblages [42]. In addition,
these species are an important fishery resource being widely exploited by artisanal and recreational
fisheries [42]. Similarly, along shallow sandy environments the bioconstructor polychaete worm
Sabellaria alveolata (Linnaeus) is an engineer species capable of modifying the coastal geomorphology
by providing new hard substrates for the settlement of sessile and vagile species [43]. Due to its
great vulnerability to anthropogenic disturbance (pollution, beach nourishment, trampling) Sabellaria
reefs are included in the European Red List of Habitats [44] and are also listed under Annex I of the
European Commission (EC) Habitats Directive (Council Directive EEC/92/43) as a marine habitat to be
protected by the designation of ‘Special Areas of Conservation’. Recent studies carried out in the Bay of
Mont-Saint-Michel [45] and Northwest Portugal [46] have demonstrated that a combination of several
factors such as trophic competition with suspension-feeders, modification in the hydrodynamics
and consequently in sedimentary patterns and an increase in reef trampling, can explain rapid reef
deterioration. The degradation of such habitats could not only adversely affect the whole coastal biota,
but it could also have strong socio-economic implications.

2. Materials and Methods

2.1. Study Sites

Case study research of some useful application of small UAV in sensitive coastal habitats, were
carried out in four different sites, along the central Tyrrhenian coast: S1 and S2 were located in Giglio
Island (Tuscany); whereas S3 (Marina di S. Nicola) and S4 (Tor Caldara) were located in the northern
and southern coast of Latium, respectively (Figure 1).

The Giglio Island is partly included in the Tuscan Archipelago National Park (DPR 22/07/1996)
due to its notable landscapes and natural interest. The general components of the island’s ecosystems
include beaches with coarse sand and rocky shores with granitic cliffs. The coastal zone is characterized



Remote Sens. 2018, 10, 1331 4 of 23

by high heterogeneity, due to the co-occurrence of sandy bottoms colonised by the sea-grass
Posidonia oceania and biogenic outcrops (i.e., coralligenous assemblages) which occur in water deeper
than 30 m [47]. Shallow rocky environments show hard granitic substrates often forming small coves
with gentle slope where the rocky areas are covered by a dense carpet of photophilic algae such
as brown seaweed Cystoseira spp. and calcified red algae of the order Corallinales, suitable for the
settlement of juvenile fish.

S3

S4

Figure 1. Location of the four surveyed areas where sensitive coastal marine habitats are present.
In particular, Giglio Island (a) show Posidonia oceanica meadows (site S1) and shallow rocky habitats
suitable for the settlement of juvenile fish (site S2), on the other hand along the Latium Coast; (b) the
presence of sandy areas constitutes a favourable environment for the formation of submerged (sites S3)
and intertidal (site S4) biogenic reefs built by the polychaete worm Sabellaria alveolata.

On the contrary, along Latium, the coasts in proximity of Marina di San Nicola and Tor Caldara are
dominated by soft bottom assemblages with sporadic hard biogenic outcrops. Being wave-dominated
beaches mainly fed by terrigenous inputs from major rivers (approximately 20 km N/S far from the
mouth of Tiber River), most of these areas are characterized by high water turbidity. The reef building
species most widespread along this Mediterranean coast is S. alveolata whose bioconstructions occur
not only in the low intertidal zone, but also in the midlittoral-upper-infralittoral zone [48].

2.2. Field Data Collection and Unmanned Aerial System Settings

For all three case studies a modified rotary-wing platform (Quanum Nova Cheerson CX-20,
Figure 2a) was chosen [49]. Compared to fixed-wing platforms, a multirotor platform sacrifices
flight time in exchange for vertical takeoff and landing capability (VTOL capability is essential over
rugged and inaccessible coastal areas). This quadcopter was equipped with an integrated autopilot
system consisting of an Arduino-based microprocessor board (ArduPilot Mega or APM, http://www.
ardupilot.co.uk/). The APM (v2.5) includes a computer processor, Global Positioning System (GPS)
module (Neo-6P Gps, U-blox, Thalwil, Switzerland), data logger with an inertial measurement unit

http://www.ardupilot.co.uk/
http://www.ardupilot.co.uk/
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(IMU), pressure (BMP085 digital barometric altimeter, Bosch Sensortec, Kusterdingen, Germany),
temperature sensor, triple-axis gyro, and an accelerometer (Figure 2b).

Figure 2. The modified lightweight quadcopter used in this study (a) and a schematic representation;
(b) of the integrated navigation and autopilot systems (APM 2.5).

The take-off payload capacity of this UAV was 1.2 kg and it was powered by a ZIPPY 4000
mAh (14.8 V) 4S 25C Lipo battery, which allowed a maximum flight time of approximately 15 min,
depending on wind speed. A remote control was used for sending commands within the 2.4 GHz
frequency band to be subsequently processed by the flight control board. This quadcopter is relatively
inexpensive (<600 euros), lightweight, and was equipped with a consumer-grade RGB, FULL-HD
action camera (Gopro Hero 4 Black Edition, Table 1) in combination with a Feiyu Mini 3D Pro (Feiyu
Tech, Guilin, China) three-axis brushless gimbal (to ensure a good stabilization on acquired images,
avoiding motion blur. In each flight mission (taking approximately 12–15 min) we collected from 200 to
450 images in medium field of view or FOV (7 MP JPEG files, 3000 × 2250 pixels). We used the medium
FOV which is a crop of the wide FOV (12 MP, 4000 × 3000 pixels) to reduce geometric distortion since
the camera used in this study had a very wide-angle lens (fish eye lens) and a short focal length. We
collected the imagery with a nadir look angle at 40 m altitude above mean sea level (AMSL) in order to
achieve a ground sample distance (GSD) of ~3 cm per pixel according to the following formula:

GSDcm/pix =
Swmm ∗ Fhm

FLmm ∗ Iwpix
∗ 100
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where GSD is the photo resolution on the ground, Sw is the sensor width, Fh is the flight height, FL is
the focal length of the camera, and Iw is the image width. It should be noted that the current formula is
referred to the estimated GSD at the sea surface so at the sea floor it could decrease up to 3.5 cm/pixel
due to the height of the water column (6 m in the deepest areas).

Table 1. GoPro Hero 4 black edition camera specifics and its relative field of views (FOVs).

Parts Specifics

Model GoPro Hero 4 Black Editition
Camera 41 mm × 59 mm × 31 mm (H × W × D), 88 g
Battery 28 mm × 35 mm × 13 mm (H × W × D), 28 g
Shutter Rolling

Sensor

Type HD CMOS 6.17 mm × 4.55 mm, 5.5 g
Focal length 2.77 mm
Pixel size 1.55 µm
Aperture (f Stop) f/2.8
Native megapixel support 12 MP

35 mm Equivalent Field of View (FOV)

Wide (W) 17.2 mm
Medium (M) 21.9 mm
Narrow (N) 34.4 mm

Verical FOV in degrees 4:3 (W) = 94.4; 4:3 (M) = 72.2; 4:3 (N) = 49.1; 16:9 (W) = 69.5; 16:9 (M) = 55;
16:9 (N) = 37.2

Horizontal FOV in degrees 4:3 (W) = 122.6; 4:3 (M) = 94.4; 4:3 (N) = 64.6; 16:9 (W) = 118.2; 16:9 (M) = 94.4;
16:9 (N) = 64.4

Diagonal FOV in degrees 4:3 (W) = 149.2; 4:3 (M) = 115.7; 4:3 (N) = 79.7; 16:9 (W) = 133.6; 16:9 (M) = 107.1;
16:9 (N) = 73.6

The image footprint on the ground covered an area of approximately 90 m (3000 × 3/100) by 67 m
(2250 × 3/100). We oriented the camera on the UAV so that the 67 m axis is parallel to in-track and 90 m
axis along the cross-track direction. Since an in-track overlap (overlap between each photo along the
transects) of 75% is recommended the UAV moved 17 m relative to the ground (75% of 67 m = 50 m;
67 − 50 m = 17 m) and took a photo. Thus, at 7 m/s GPS airspeed subject to wind) to maintain a
sufficient overlap between photos, we needed to take photos every 2 s. We set the time lapse mode
with auto white balance and exposure. Additionally, at least 65% cross-track overlap (overlap between
consecutive transects) is required to ensure good results in orthophoto generation so the UAV flight
lines were spaced no greater than 31.5 m (Figure 3a). According to these parameters, the camera
positions and the image footprints, directly estimated from the open-source software APM Mission
Planner (v. 1.3.34), are shown in Figure 3b. To perform programmed GPS missions (i.e., autonomous
survey grids) we combined the drone’s APM with Mission Planner 1.3.5. Some important features
of Mission Planner are that it can plan, save, and load autonomous missions into the autopilot using
Google or Bing satellite maps. It is also able to record telemetry logs which contain information logs
and, finally, it is possible to download and analyse mission logs created by the APM autopilot. To avoid
water motion and reflections, we timed the survey to coincide with the virtual absence of wind, low
tide and optimal location of the sun as suggested in Casella et al. [50].

Since we wanted to maintain this application at low-cost and for our georeferencing purposes high
accuracy was not required, we used a direct georeferencing technique [51,52]. The camera positions at
the time of each photograph (i.e., exposure stations) were determined using the UAV onboard GPS
receiver and recorded in the exchangeable image file format (Exif) metadata for each image, after
estimating time offset (with pre-flight synchronisation of the camera’s internal clock with GPS time for
better results) with Mission Planner (v.1.3 or higher) geotagging images tool (a quick tutorial is available
at http://ardupilot.org/copter/docs/common-geotagging-images-with-mission-planner.html).

http://ardupilot.org/copter/docs/common-geotagging-images-with-mission-planner.html
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Figure 3. Schematic drawing displaying a typical aerial survey grid used during Unmanned Aerial
Vehicle (UAV) mapping (a). Light blue rectangles indicate the image footprint and blue areas the
cross-track and in-track overlaps, dotted black line represents the fly path and green dots within
the flight path represent the location of the camera at the time of capturing each photograph. In (b)
is represented a snapshot from the grid configuration panel in Mission Planner before the aerial
acquisition was carried out in the S4 site.

The height measurements from navigation-grade GPS receivers are relatively inaccurate
(±5–10 m), hence, we use height measurements provided by the barometric altimeter which is
estimated to be accurate to 1 m when used over short time periods (without strong variation in
barometric pressure due to changes in weather conditions). This approach, which does not rely on
ground control points (GCPs) in the imagery, is useful when working in unsafe or inaccessible areas
where GCPs cannot be physically measured on the ground. The absolute accuracy of derived point
cloud was limited primarily by the navigation grade GPS, but as reported in Turner et al. [51] that used
a similar GPS module (LEA6S, U-blox, Thalwil, Switzerland) to our study, the translation parameters
(after the Helmert transformation used to describe the relationship between the point cloud coordinate
system and the real-world coordinate system), typically have low formal errors (often <±40 cm)
indicating that the relative position of the GPS points has comparatively high precision. In addition,
these measured values (from the on-board GPS) can be useful to estimate the camera’s approximate
external orientation parameters to speed up the photogrammetric workflow (bundle adjustment) in
Agisoft Photoscan.

2.3. Structure from Motion Workflow and Orthophoto Map Generation

The photos were mosaicked using Agisoft photoscan 1.2.6 (LLC Agisoft, St. Petersburg, Russia) [53].
The software was designed to create 3D models from overlapping 2D still images using automated
reconstruction algorithms. Generating orthophoto mosaics is a workflow of five steps [54,55]:
(i) imagery and metadata input; (ii) photo alignment and generation of a sparse point cloud through
tie point matching. Structure from Motion algorithms detected image features points and subsequently
monitored the movement of those points throughout the sequence of multiple images with different
angles. Using this information as the input, the locations of those feature points were estimated and
rendered as a sparse three-dimensional point cloud; (iii) densification of the point cloud using MVS for
the reconstruction of the scene geometry via creation of a 3D polygon mesh. The software used dense,
multiview stereo-matching algorithms in order to create a polygonal mesh that could be visualized in
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a solid, shaded, and wireframe mode; (iv) texture atlas production of the 3D polygon mesh into an
orthophoto mapping projection; and (v) exportation of the orthophoto mosaic as GeoTIFF files.

Before importing remote sensing imagery into Agisoft Photoscan, the photographs were first
corrected and enhanced. Lens distortion corrections and camera calibration parameters were estimated
using Agisoft Lens software (LLC Agisoft, St. Petersburg, Russia). The estimation of these geometric
characteristics (i.e., the focal length of the lens, the coordinates of the centre of projection of the
image, the radial lens distortion coefficients) is performed through the camera calibration process in
order to be able to extract accurate 3D metric information from images [56]. In addition, since GoPro
photographs were originally recorded with Protune mode activated we enhanced them (white balance,
colour contrast and saturation, exposure, shadows/highlights) with Adobe Lightroom v. 5.1 (Adobe
Systems, San Jose, CA, USA).

After photo alignment, firstly sparse point clouds, and thereafter dense point clouds, were
generated with “medium” quality and “aggressive” depth-filtering settings. We used these settings in
order to speed up the processing time. However, if the area to be reconstructed contains meaningful
small details, then it would be reasonable to choose high quality and moderate depth filtering to avoid
sorting out most of the outliers, as suggested in Agisoft LCC user guide [53]. Typical acquisition and
processing pipeline for UAV images are shown in Figure 4a.

The resulting point clouds usually had 2 to 6 million points (80 to 200 points/m2). Finally, dense
3D point clouds were used to create 3D meshes of the scene geometry and digital surface models
(DSMs) to correct (ortho-rectify) for features that appear oblique due to the wide angle and low
altitude photography. However, it should be noted that our results are affected by measurement errors
due to the effects of two-media photogrammetry (i.e., light breaking at the water/air interface) and
poor positional accuracy (stems from the use of on-board GPS). We used them in this paper only
for visualization purposes because further processing techniques are needed to quantify bathymetry
from SfM-based DTMs. For a rigorous workflow that takes into account these aspects please refer to
Tamminga et al. and Woodget et al. [28,57].
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(eCognition Developer 8)

Acquisition and processing fof UAV images (a) OBIA segmentation and classification (b)
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2.4. Image Processing and Classification Procedures

Due to very high spatial resolution of the images, a powerful procedure of image analysis is
needed. At this stage, classification methods based only on pixel information are very limited due to
the spectral similarities. To solve this limitation, object-based image analysis (OBIA) can be a useful
tool to discriminate cover classes. The software eCognition Developer 8 (Definens AG, Munchen,
Germany) [58] was used for our OBIA. Rule sets were developed based on the segmentation process
of images into homogenous segments (i.e., objects). Rule sets, which are a sequence of processes that
are executed in a defined order [59], include segmentation parameters that create meaningful objects
generated by one or more criteria of homogeneity (e.g., scale, shape, compactness). The heterogeneity
of the pixel values within image objects is defined by the “scale” factor, a higher value of this parameter
results in fewer, more heterogeneous objects with a larger average size. In eCognition image objects
may also be delineated based on their geometric properties, and the weight of this factor is controlled
by the “shape” and “compactness” parameters. Rule sets allow the user to examine what cover
classes are least distinguishable from others and to refine specific thresholds, through several iterative
classification trials, to better capture the variation of that class in order to optimize our OBIA cover
estimates with the ground-truthed cover data [37]. The following classification is based on features
calculated for each object that not only deal with spectral values but may also be related to size, form,
texture, neighbourhood [31]. Prior to segmentation, imagery was filtered to remove noise (extraneous
information irrelevant to the OBIA) through a median filter and a convolution filter. Further detail and
formulae for calculating filters can be found in Trimble’s eCognition Developer 8 reference book [59].

The classification approach is carried out as a top-down approach, within a multi-scale (two level)
hierarch segmentation process consisted of a multiresolution segmentation algorithm followed by
a spectral difference segmentation algorithm. First, we performed a multiresolution segmentation
on level 1 where we chose the scale, shape and compactness as variables in order to define objects
boundaries. Essentially, the procedure identified single image objects, applying an optimization
procedure which locally minimizes the average heterogeneity of image objects based on relative
homogeneity criteria [37,60]. Twenty features were derived from layer values (e.g., mean band
value, standard deviation of band values, border contrast, pixel ratio, intensity, hue, saturation).
However, after iterative trials we found that the best feature capable of improving the multiresolution
segmentation when selected as compactness criterion is the mean hue. The selection of features was
based on previous studies of UAS imagery acquired with a digital camera [30]. The scale parameter
varied in the function of the sensor and the spatial resolution and for our high-resolution UAV-based
imagery the best values are comprised between 100 and 150, and the remaining segmentation parameter
(i.e., shape) was always <0.6. The low values for shape resulted in a much higher influence of colour
(spectral information) on the segmentation process. A second level was created by merging existing
objects of level 1 based on the absolute spectral difference. Spectral difference segmentation merged
neighbouring image objects when the difference between their layer mean intensities was below the
value given by the maximum spectral difference [58]. It was designed to refine existing segmentation
results, by merging spectrally similar image objects, avoiding an over-segmentation which may
produce a scattered classification. Afterwards, segmented image objects can be classified by nearest
neighbour classification which uses a set of samples of different classes in an attempt to assign class
values to a segmented object [60]. The subsequent object-based classification (nearest neighbour
algorithm) was realized by selecting thresholds of class specific image features (mean RGB values,
mean brightness, standard deviation RGB, position, and shape). The thresholds of these features were
automatic registered by selecting manually class specific samples via an on-screen interpretation [32].
At least 40 training areas for each class were used. Overall, considering the three coastal habitats
investigated, 16 cover classes were defined: beach, shallow (0–1 m) and deep (>1 m) sandy areas,
Posidonia oceanica, dead ‘matte’ of P. oceanica, dead leaves of P. oceanica, emerged rocks, wet rocks,
submerged rocks, rocks with algae, green algae, S. alveolata emerged and submerged reefs, vegetation



Remote Sens. 2018, 10, 1331 10 of 23

(shrubs and grass), whitecaps and shadows. The OBIA flowchart and segmentation parameters for
each marine sensitive habitats are shown in Figure 4b.

We assessed the accuracy of the land cover classification algorithm by comparing the reported
land cover of randomly selected points to the actual land cover and generated a confusion matrix
which reports how well the OBIA algorithms classified the imagery [61]. We randomly placed 200–450
accuracy assessment points (distinct from the training areas) proportionally by total land cover area
of each class. We manually classified each point and the accuracy of the classified imagery was
assessed visually using the original true colour UAV orthophotos. Due to the high spatial resolution
of the imagery visual inspection is very reliable for assessing accuracy [36]. However, in the most
difficult areas such as the deepest patches of Posidonia, accumulation areas of dead leaves, isolated
Sabellaria formations on sand we used underwater video survey to confirm the visual interpretation
of UAV-based imagery. For this purpose, high-resolution orthomosaics with a positional accuracy
of (±1.5–2 m) were converted into kmz files and uploaded into a handheld GPS unit with European
Geo-stationary Navigation Overlay System (EGNOS) correction (Garmin GPSmap 62). A more
detailed description regarding ground truth data with illustrations is available in Supplementary
Material Section.

Finally, a confusion matrix was calculated to evaluate the accuracy of the final classifications
including: (i) the producer’s accuracy, which is defined as proportion of correctly classified objects
to the reference samples of a class; (ii) the user’s accuracy, which is defined as the proportion of
correctly classified objects within the total number of samples classified; (iii) the overall accuracy,
which is defined as the proportion of all correctly classified objects and the total sample size; and (iv)
the Kappa index of agreement (KIA), which is defined as the agreement of the classification results
with the corresponding reference data. Congalton et al. and Sim et al. [62,63] proposed categories
for assessment of the classification performance measured by the Kappa value as poor (≤0), slight
(1–0.20), fair (0.21–0.40), moderate (0.41–0.60), substantial (0.61–0.80), and excellent (≥0.81).

3. Results

3.1. Posidonia oceanica Meadow

In the S1 site the generated orthophoto of the Posidonia oceanica meadow in front of the beach of
Cannelle had a resolution of 2.76 cm/pix (Figure 5a). The high level of detail of the generated map
clearly showed some important features both of the coastal zones and of the sea bottom, providing
useful data for low-cost monitoring these shallow sensitive coastal environments. In fact, other than the
meadow (Figure 5b), patch formation of the seagrass on rocks (Figure 5c) and sand (Figure 5d), dead
leaves of Posidonia oceanica lying on the sea bottom (Figure 5e), impacted areas from boat anchoring
with exposed root-rhizomes (called “matte”, which may continue to persist after the death of the dense
leaf canopy; Figure 5f), and the accumulation areas of beached organic debris (called “banquettes”,
95% of which consists of dead leaves of the seagrass, [64], Figure 5g), were clearly distinguishable.

The segmentation of the orthophotos is a critical phase during thematic maps production through
OBIA since the characteristics of various objects can be used in the classification process. For this reason,
the segmentation results that determine the geometry objects in the multi-resolution segmentation
should be carefully assessed (Figure 6a). Major land-cover misclassification errors involved spectral
confusion among P. oceanica dead leaves (with a total of 38% of samples interpreted as P. oceanica)
and Posidonia meadow. Additionally, exposed “matte” (with a total of 11% of samples interpreted
as sand) illustrated the difficulty in separating these two land-cover classes. The inset of Figure 6a
demonstrates that the complex meadow area which include spectrally different features, such as
isolated Posidonia oceanica patches, dead ‘matte’ and sandy areas have been successfully segmented
into 2037 different image objects and finally correctly classified. Classified map (Figure 6b) regarding
Posidonia meadow’s features, demonstrated a good match between classified land-cover and the
original aerial imagery leading to an overall classification accuracy and a KIA of 85% and 83%,
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respectively (Table S1). Thanks to this classification, we were able to identify the most damaged parts
of the meadow. In fact, in this bay we reported that the meadow could be considered impacted because
large areas with dead ‘matte’ (1630 m2 equivalent to 15% of the meadow) were clearly visible.

(a)

(g)(d)

(e)

(f)

(b)

(c)

Figure 5. High-resolution orthophoto (2.76 cm/pix) of the Posidonia oceanica meadow in front of the
beach of Cannelle (a). Important underwater features characterizing this environment are shown
trough underwater photos used as ground truth data. P. oceanica seagrass meadow (b), patch formation
of the seagrass on rocks (c) and sand (d), dead leaves of Posidonia oceanica lying on the sea bottom
(e), impacted areas from boat anchoring with exposed root-rhizomes (f), and accumulation areas of
beached leaves and rhizomes (g).

Figure 6. Cont.
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Figure 6. Segmentation results of the S1 site after OBIA methods (a) clearly demonstrate that the
complex meadow area has been successfully segmented into different image objects and subsequently
correctly classified into eight cover classes, producing a high-quality thematic map (b).

3.2. Nursery Area of Juvenile Fish

The case study for mapping juvenile sparid fish nursery areas was carried out along a rocky
shoreline (~1 km long, coverage area: 0.0431 km2) north of Giglio Porto (Site S2). In this area, the coast
is sheltered from winds blowing both southward and northward due to the presence of the harbour
and of a natural promontory. From the orthomosaic generated by 160 overlapping images the high
heterogeneity over the whole extent of the mapped area was clearly visible. Along this jagged coastline
we identified two small coves (Figure 7a) were the presence of particular natural features such as
sandy patches, pebbles and large boulders made such area suitable for settlement of juvenile sparid
fish [42,65,66]. In fact, thanks to the high resolution (3 cm/pix) of the imagery after a visual inspection
we were able to identify the most suitable habitats for juvenile fish of the genus Diplodus. Generally,
sheltered areas with gently slope and the rocky substrates, colonized with shrubby brown algae (e.g.,
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Phaeophyceae) characterized by the presence of sandy patches with coarse sand and pebbles, near
to large boulders (diameter > 1 m) were particularly favourable for the settlement of Diplodus spp.
In addition, by integrating the generated 3D outputs (e.g., point clouds and DEM with appropriate
corrections due to two-media photogrammetry effects) also the structure of the coastal zones, such as
the height of boulders and the main morphologies of seabed in the shallower areas can be assessed
(Figure 7b,c).

Figure 7. The orthomosaic generated by 160 overlapping images representing the rocky coastline of the
S2 site (a). Red frames highlight the two small coves were the presence of particular natural features
such as sandy patches, pebbles and large boulders made these areas suitable for settlement of juvenile
sparid fish. The generated 3D outputs from structure from motion (SfM) routine: The 3D model (b)
and digital elevation model (c) demonstrate the detail level to which coastal features are resolved
in these products. Note that the elevation reported are affected by the effect of light breaking at the
water/air interface.

On the orthophoto (total area of about three hectares), representing a suitable area for the
settlement of juvenile sparid fishes, the OBIA approach was implemented to classify nine cover classes.
The classified image yielded an overall accuracy of 84% (Table S2). In terms of per class accuracy,
all classes were relatively high (>70%), except for the classification of submerged rocks, wrongly
classified as sand and dead “matte” of P. oceanica. However, classification of submerged rocks is difficult
because of the lack of spectral contrast between the surrounding bottoms mainly due to absorption
of light in the 550–750 nm spectral range by water molecules. In fact, emerged cover classes such as
beach and dry rocks showed higher classification accuracies. The classified orthophoto (Figure 8a)
clearly showed some important features characterizing these coastal environments. For instance, we
reported the presence of brown macroalgae (especially Cystoseira spp., Figure 8b–d). This species is
very important along rocky coasts because well-developed Cystoseira belt communities indicate good
water quality [67] and, in general, arborescent macro-algae forests covering temperate rocky reefs are a
known habitat for juvenile fish [68]. On the other hand, the southern part of the P. oceanica meadow
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presented an impacted area (represented by dead “matte”, Figure 8e–g) near to the port, probably due
to the works for the expansion of the breakwater.

Figure 8. The classified orthophoto (a) through OBIA method of the S2 site showing some important
features characterizing this coastal environment, such as arborescent macro-algae (Cystoseira spp.)
belts (b–d); and a degraded area of the P. oceanica meadow (represented by dead ‘matte’) near to the
port (e–g).

3.3. Sabellaria alveolata Biogenic Reefs

To evaluate the utility of the UAS-based imagery also along sandy coasts, characterized by the
presence of Sabellaria alveolata reefs, two specific mission were carried out along Central Latium,
approximately 33 km north (site S3) and 45 km south of Rome (Site S4). The two sites differ from
each other because, in site S3, the biogenic reef is only present far from the coast, from 2 to 5 m depth.
By contrast site S4 shows a Sabellaria reef also along the emerged part of the beach. In these areas,
thematic map generation to highlight the characteristics of biogenic reefs is not an easy task, mainly
due to water turbidity which often characterizes these shallow sandy environments. In addition,
the polychaete worm Sabellaria builds its tube and forms large intertidal colonies by cementing sand
grains with mucous secretions. Therefore, being made of sand, these reefs show a very similar spectral
signature with neighbouring cover classes (sandy areas). However, despite these limiting factors, we
achieved satisfactory classification accuracies (Tables S3 and S4) following OBIA workflow both for
site S3 (Figure 9a,b) and for site S4 (Figure 10a,b). In fact, both sites had an overall accuracy >80%,
however, site S3 showed a slightly lower level (moderate) of the Kappa index of agreement (0.77).
As expected, the most misclassified classes were S. aleveolata bioconstructions (both considered as
emerged or submerged reefs), incorrectly assigned to sandy areas of the bottom, emerged beach and
submerged rocks. In addition, in site S3 also the submerged rocks tended to be misclassified as sand
due to water turbidity and depth. Obviously, as in the other study cases a close examination of the
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imagery revealed variation in water surface perturbation throughout the orthomosaic (calm to light
ripples, waves and whitecaps) that may have hindered classification of submerged features. Moreover,
the accuracy of coastline segmentation and classification, depends on the complexity of the beach [33].
In fact, in complicated areas, such as the S4 site, where the beach is a mixture of rocks, algae formations,
tree shadows and erosion gaps, the segmentation of the coastline is more difficult (inset of Figure 10b).
Aside from the coastline, also the emerged sector of the reef consisting of small Sabellaria colonies
(517 m2), are clearly visible over the whole extent of the mapped area (Figure 10c,d).

(a) (b)

Figure 9. High-resolution orthomosaic of the site S3 (a) representing a sandy coast with underwater
formation of reef-building tube worm Sabellaria alveolata. Thematic map of the same areas generated
after image segmentation and classification through OBIA algorithm (b).

(a) (b)

(c) (d)

³ ³

Figure 10. Orthomosaic of the S4 site (a) generated through UAV imagery representing a complex
sandy/rocky coast with both a submerged and an emerged (highlighted area) reef of Sabellaria alveolata.
Raster map produced after segmentation and classification following OBIA routine (b). The inset shows
the effects of tree shadows during segmentation steps, leading to the misclassification of the emerged
beach. Detailed view (c) of the emerged reef (1:500) and the same area after image classification
performed by the OBIA algorithm (d).
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4. Discussion

Remote-sensing techniques have revolutionized spatial ecology by delivering very fine spatial
resolution data, at user-controlled revisit periods, which would otherwise be difficult to study [19].
Off-the-shelf, survey-grade unmanned aerial platforms, data processing and analysis tools are now
readily available to ecologists, botanists, and coastal engineers. In fact, the understanding of particular
ecological processes and our capability in summarizing their variability trough further integration in
geographical information systems (GIS) often depend on the spatial scale of the imagery, which in turn
influences the selection of the rule set scale [37] during OBIA classification. In this context, UAVs have
considerable potential to radically improve environmental monitoring [69]. Our research demonstrates
that very high UAV-based data and multi-resolution segmentation (MRS) with specific rule sets can
capture most variations for our land cover classes of sensitive costal habitats, providing appropriate
data for maps production, at fine spatial and temporal resolutions and at reasonable costs. However,
trade-offs regarding the subjectivity in the choice of scale parameter (SP) during MRS and specificity of
rule sets are likely. For instance, MRS relies on the SP to control the internal (spectral) heterogeneity of
the image objects and is therefore correlated with their average size, and then with the accuracy of the
further classification [70]. However, the selection of SP is a trial-and-error optimisation which is based
on a visual assessment of segmentation suitability making this procedure hardly reproducible [70,71].

Results are specific for our high–spatial resolution imagery concerning our three sensitive coastal
habitats (P. oceanica meadows, rocky coast with nursery areas, and sandy areas with S. alveolata reefs)
and should not automatically be extended to other typologies of shallow marine habitats (e.g., other
phanerogames meadows, lagoons and coral reefs). Thus, one of the limitations of OBIA is that it is
highly dependent both on the kind of imagery and on the user experience and will likely vary even
among experienced analysts [37]. For these reasons, further research should include more consistent,
and less subjective, procedures for the repeatability and parameterisation of feature selection during
the OBIA workflow [70,72,73].

However, the approach used in this study concerning the utility of OBIA for the classification of
shallow temperate marine environments which essentially increased the homogeneity of each object
and increased our edge effect, reducing texture analysis possibilities [74] will likely be consistent for
small-scale surveys and might provide a starting point for further studies, including multiple spatial
resolutions and larger extents. Obviously, low spectral separation between classes, sunlight reflection,
water transparency, and sea state are causes of cover class misclassification. However, if aerial imagery
acquisition is performed during optimal wind/light conditions (our survey was carried out in the
afternoon from 1600 to 1800 h with wind speeds less 5 m/s and clear water conditions) a more accurate
image classification might be achieved.

In addition, UAV mapping and dense point-cloud generated by the SfM algorithms will probably
become more and more used especially when the availability of off-the-shelf UAV, incorporating
on-board precision real-time kinematic (RTK) GPS, will remove the need for any additional ground
surveying or equipment (e.g., time-consuming pre-flight GCP displacements and their collection
with D-GNSS system), allowing an accurate transformation from the ‘arbitrary’ coordinate system to
the required real-world coordinate system [75]. In fact, despite the fact that the absolute positional
accuracy of our data is rather poor (~2 m) because the use of a navigation-grade GPS receiver used for
direct georeferencing, and we have not considered the effect of light breaking at the water/air interface
according to Snell’s Law [57,76], our results show that consumer-grade drones can be effectively
applied in the monitoring of coastal sensitive habitats at scales that lie between the typical scales of
SCUBA surveys and those typical of airborne or satellite mapping, as also reported for coral reefs [50].
Additionally, because seabed surfaces can be visible through the water, with further processing it may
be possible to quantify bathymetry from digital terrain models (DTMs) [28,77].

The use of UAVs is a major step toward more cost-effective and efficient operational monitoring
and management of natural resources in the coastal zone. In fact, raster outputs produced from
low-altitude aerial images using SfM, such as orthomosaic images and DEMs, demonstrate the degree
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to which landscape features are resolved in these products. High spatial and temporal resolution make
it possible to detect local or very fast changes along shallow sensitive coastal habitats, offering an
effective tool for the management and conservation of the coastal area. For instance, the anthropogenic
disturbance acting on the three Mediterranean sensitive habitats, here considered, cannot be ascribed
to a sole cause, but rather to a complex set of direct and indirect causes. In fact, the decline of
seagrasses (including P. oceanica meadows) on a large spatial scale has been attributed to anthropic
activities such as illegal trawling [78], fish farming [79], and pollution [80]. By contrast, on a smaller
spatial scale, particularly in coastal areas subjected to intense recreational activity, meadows are
impacted by mechanical damage caused by boat anchoring or moorings due to dragging anchors
and scraping anchor chains along the bottom, generally resulting in dislodgement of plant rhizomes
or leaves [40,81,82]. Thus, the understanding of within-meadow heterogeneity, highlighting the
aforementioned negative effects of human activities through high-resolution UAV-based imagery can
be a complementary approach to more traditional boundary mapping which has often been conducted
using underwater SCUBA or remotely-operated vehicle (ROV) surveys [83].

Furthermore, along heterogeneous rocky coasts, often inaccessible due to the presence of abrupt
rocky cliffs, drones bring the ability to capture useful data for environmental variation analysis.
In fact, highlighting the most suitable areas that could serve as nursery grounds for fish is a key issue
for the management of these nearshore ecosystems. The importance of nurseries is an established
ecological concept accepted by scientists, conservation groups, managers, and cited as justification
for the protection and conservation of these areas [84]. In fact, human pressure has changed the
coastal strip [85], particularly through the construction of ports, beach nourishment and implants
for fish farming, with no consideration for the possible effects induced by their construction on the
connectivity dynamics of coastal fish species [86]. Given the essential role that nurseries play in the
functioning of fish populations, drone-based remote sensing gives a great promise to investigate
their status to inform researchers and managers for better manage conservation efforts. Moreover,
to place our results in their wider context, the ability of delivering images of high spatial resolution,
DEMs and accurate thematic maps can considerably improve also traditional techniques used along
shallow marine habitats such as the Underwater Visual Census [87,88], often implying rich datasets
regarding fish abundances and habitat characteristics which often need to be implemented into specific
GIS. In fact, UAV-based imagery and SfM by depicting costal morphology, slope, orientation, and
the geometry of underwater features can provide to ecologists a new tool to infer other important
characteristics of nursery areas, leading to a more comprehensive understanding of the requirements
needed by early life stages of costal fish species.

While UAVs cannot compete with satellite imagery in terms of spatial coverage, they provide
unprecedented spatial and temporal resolutions unmatched by satellites, providing a key tool for
coastal monitoring [69]. Conservation of the marine environment mainly focuses on threatened
elements and more precisely on vulnerable species. Indeed, a pivotal issue for the management
of sandy coasts would thereby acquire spatial data regarding the distribution of biogenic reefs
which can increase biodiversity, are attractive feeding grounds for birds and fish, and have a high
socio-economic implication [89]. In these context, biogenic reefs formed by the honeycomb worm
Sabellaria alveolata become an important natural feature to be detected and monitored. In addition,
human trampling is one of the main anthropogenic threats to coastal communities, especially for
biogenic reefs [46]. Therefore UAV-based imagery coupled with SfM photogrammetry might be further
refined to become a standardized, objective tool for monitoring these kinds of impacts and better
understand the resilience capacity of the endangered biological inheritance represented by S. alveolata
reefs [90]. We demonstrated that orthomosaics derived from a lightweight UAV coupled with OBIA
can be successfully used to map emerged and submerged (up to 5 m depth) Sabellaria reefs. These
environments result quite complex for mapping because they are characterized by high water turbidity,
and strong water movements due to shallow depths resulting in spectral reflectance of whitecaps.
Moreover, shadows of adjacent coastal features such as dune systems and trees may mask important
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areas. These aspects influence most remote-sensing classification processes, and although their effects
can be minimized by collecting imagery during calm sea state and close to solar noon, or even just
before sunset or sunrise, sea surface roughness and shadow inaccuracies often occur. However, as we
have demonstrated, subdecimeter resolution remote sensing data, classified using OBIA methods have
the potential to provide low-cost solutions for monitoring coastal sandy environments which contain
key features that are potentially difficult to classify using spectral information contained within the
pixels of airborne and satellite imagery.

5. Conclusions

Unmanned aerial vehicle -based remote sensing provides new advanced tool for the monitoring
of key coastal areas, including sensitive shallow habitats, where often species are threatened by
human activities. Our work provides an overview of some applications along three different coastal
areas, testifying the great potential of these techniques along temperate environments. Within the
regulatory constraints that determine their use, UAVs provide an efficient and cost-effective survey
tool for mapping and measurement in the coastal zone. In fact, before undertaking research projects
involving UAVs, we must consider national regulatory frameworks that impose restrictions, such as
the maximum flight altitude, no fly zone, clear landing and take-off areas [75]. However, the evolution
and perspectives of UAV-based applications looks very promising due to the relative low cost with
respect to the benefits obtained. In fact, the field of ecology is severely hindered by the difficulties of
acquiring scale-appropriate data of ecological processes, and land cover information at user-specified
temporal resolutions with reasonable costs [19]. The results of this study demonstrate how the
combination of two new remote sensing technologies in the form of UAVs and OBIA methods can be
successfully combined to reach very fine mapping and classification of coastal habitats. High-resolution
imagery allows rapid detection of key habitats and, thus, can be used to identify sensitive areas where
management action should be implemented to improve or maintain habitat quality and biodiversity.
Finally, we should consider that even if the camera equipment used herein only captures three colour
(RGB) channels, more recent remote sensing technological developments show great promise for future
research projects. For example, by adding the near infrared (NIR) sensors would not help during
the classification of underwater features because of rapid absorption in the water column, however,
it would help in classifying surfacing algae and vegetation (even beached or decomposing material)
on beaches and rocks. However, in such cases, atmospheric and radiometric corrections need to be
quantified in order to properly obtain radiance values for proper interpretation of vegetation presence
through normalized difference vegetation index (NDVI), even if these effects are much lower in UAV
than satellite images [91]. Moreover, in the next few years, it is likely that even higher accuracies will
be obtained thanks to the development of a “fluid lens”, which is still experimental, but holds great
promise [92]. In fact, due to rapid advances in technology and miniaturized components a wider
spectrum of sensors, including multispectral, hyperspectral cameras, lightweight LiDAR systems are
becoming more available on small aerial platforms [69].

Indeed, the combination of lightweight AUVs with image processing techniques and increasingly
efficient software solutions can provide accurate systems for producing very high- resolution map of
sensitive coastal areas that can be efficiently transformed into usable products for a broad range of
ecological applications.

Supplementary Materials: The following data (ground truth survey information) and tables (S1, S2, S3 and S4)
are available online at http://www.mdpi.com/2072-4292/10/9/1331/s1.
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