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A B S T R A C T   

Invasive plant species pose a direct threat to biodiversity and ecosystem services. Among these, Rosa rugosa has 
had a severe impact on Baltic coastal ecosystems in recent decades. Accurate mapping and monitoring tools are 
essential to quantify the location and spatial extent of invasive plant species to support eradication programs. In 
this paper we combined RGB images obtained using an Unoccupied Aerial Vehicle, with multispectral Planet-
Scope images to map the extent of R. rugosa at seven locations along the Estonian coastline. We used RGB-based 
vegetation indices and 3D canopy metrics in combination with a random forest algorithm to map R. rugosa 
thickets, obtaining high mapping accuracies (Sensitivity = 0.92, specificity = 0.96). We then used the R. rugosa 
presence/absence maps as a training dataset to predict the fractional cover based on multispectral vegetation 
indices derived from the PlanetScope constellation and an Extreme Gradient Boosting algorithm (XGBoost). The 
XGBoost algorithm yielded high fractional cover prediction accuracies (RMSE = 0.11, R2 = 0.70). An in-depth 
accuracy assessment based on site-specific validations revealed notable differences in accuracy between study 
sites (highest R2 = 0.74, lowest R2 = 0.03). We attribute these differences to the various stages of R. rugosa 
invasion and the density of thickets. In conclusion, the combination of RGB UAV images and multispectral 
PlanetScope images is a cost-effective method to map R. rugosa in highly heterogeneous coastal ecosystems. We 
propose this approach as a valuable tool to extend the highly local geographical scope of UAV assessments into 
wider areas and regional evaluations.   

1. Introduction 

Invasive plant species have a direct impact on ecosystem structure 
and function worldwide (Weidlich et al., 2020), affecting biodiversity 
and the supply of ecosystem services. The fast pace and aggressivity of 
invasions can also cause severe economic losses (Haubrock et al., 2021) 
and compromise iconic landscapes of very high cultural value (Junk & 
da Cunha, 2012). Invasive plant species can also modify soil and other 
physical conditions in ways that increase their own fitness relative to 
that of native species (Jordan et al., 2008). 

Coastal ecosystems are particularly susceptible to invasive species, 
due to the occurrence of sensitive habitats (e.g. sand dunes, coastal 
meadows, seagrass meadows, and coral reefs) and protected and rare 
species (Carboni et al., 2010; Pardini et al., 2015). One of the most 

troublesome invasive plant species in natural or semi-natural habitats of 
northern Europe is Rosa rugosa (Kelager et al., 2013). This species native 
range spreads throughout China, the Korean peninsula, Japan and the 
Kamchatka peninsula (Zhang et al., 2018). R. rugosa was introduced to 
Europe as an ornamental and sand dune fixing plant in the 19th Century 
(Menkis et al., 2014). In coastal areas of the Baltic Sea, R. rugosa con-
stitutes a major coastal ecosystem invasive, predominantly in sand 
dunes and coastal meadows (Kunttu and Kunttu, 2019). The first natu-
ralized record of R. rugosa in Europe was in Germany in 1845 (Zhang 
et al., 2018). This invasive shrub strongly outcompetes other species in 
sand dunes and coastal meadows, ultimately turning these habitats into 
dense, monospecific R. rugosa thickets (Bruun, 2006). On sand dunes 
R. rugosa increases soil organic carbon, total nitrogen and phosphate, 
which hinders the recovery of the habitat even after the removal of the 
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species (Stefanowicz et al., 2019). In addition to the threat to biodi-
versity and ecosystem services in coastal areas of the Baltic Sea, control 
and eradication measures are costly and labour-intensive. In coastal 
areas, the common challenges associated with satellite-based remote 
sensing, such as coarse ground sampling distance (GSD) and sub-pixel 
spectral mixing, are amplified by the geomorphological structure of 
coastlines. Highly sensitive ecosystems such as sandy beaches, including 
dune areas, occur as very narrow bands along the coast, often just a few 
meters wide. This, in combination with the spectral nature of seawater, 
renders the use of medium resolution satellite missions (e.g. Sentinel 2 
and Landsat missions) challenging for invasive species mapping. 

For decades, monitoring of invasion processes has relied on plot- 
based sampling and monitoring (Cheney et al., 2018; Pickart et al., 
1998). However, the local and spatially-constrained nature of these 
methods hinders our ability to fully understand the dynamics and spatial 
nature of invasions. Moreover, plot-based assessments can only provide 
a rough approximation of the extent of the areas affected, consequently 
compromising eradication efforts undertaken by public agencies and 
practitioners. 

Shifting towards accurate continuous cover data to map the extent 
and spread dynamics of invasive plant species has become a priority in 
conservation science, policy and practice (Caplat et al., 2012; Lehmann 
et al., 2017). The wide range of remote sensing instruments and plat-
forms available nowadays constitute an ideal toolset to overcome the 
limitations associated with traditional monitoring methods. The multi-
ple spatial, spectral, and temporal resolutions associated with past and 
present satellite missions allow for accurate spatial representations of 
plant species invasions (Kattenborn et al., 2019; Martin et al., 2018). In 
addition, the latest advances in machine and deep learning techniques 
have reduced the computational challenges involved in the processing of 
very large datasets (Díaz-Ramírez, 2021), the classification of 
spectrally-similar vegetation types (Beyer et al., 2019), or modelling 
complex ecosystem structures and functions (Dong et al., 2021). Many 
studies have taken advantage of the combination of satellite and 
airborne remote sensing data and artificial intelligence to map and 
monitor invasive plant species. Kattenborn et al. (2019) used Unoccu-
pied Aerial Vehicle (UAV)-based reference data and random forest 
models with multitemporal Sentinel − 1 and − 2 data to predict the 
canopy cover of woody invasive species. In another work, the fractional 
cover of the invasive shrub species Ulex europaeus was estimated based 
on high-resolution UAV images and a medium resolution intra-annual 
time-series of Sentinel-2 (Gränzig et al., 2021). 

In this study, we use the term Unoccupied Aerial Vehicles, as 
encouraged by Joyce et al. (2021). Unoccupied Aerial Vehicles (UAVs), 
have the capacity to evaluate the fine spatial scale of ecosystem struc-
tures, functions and processes that may be “invisible” to medium reso-
lution satellite sensors. Moreover, the flexibility of deployment and 
ability to carry various sensors (e.g. red green blue [RGB], multispectral, 
LiDAR, or thermal), boost the potential of UAVs to map invasive plant 
species. Not surprisingly, several studies have tested UAV-based ap-
proaches for detecting and mapping invasive plant species (Papp et al., 
2021). However, UAVs are strongly limited by relatively short flight 
time capabilities, and the large size of the datasets generated. This, in 
turn, limits the capacity of UAV to provide consistent data over large 
spatial extents. 

In recent years, a range of high and very high spatial resolution 
satellite missions have emerged, revolutionizing the fields of remote 
sensing and biodiversity monitoring. More specifically, Planet Labs Inc. 
Operates a constellation of over 180 CubeSats that supply multispectral 
imagery in ground sampling distances (GSD) under 4.1 m per pixel (Roy 
et al., 2021). The PlanetScope constellation has proven useful for 
various applications such as detection of forest change (Francini et al., 
2020), monitoring pasture aboveground biomass (Dos Reis et al., 2020) 
and detection and mapping of invasive plant species (Theron et al., 
2022; Lake et al., 2022). Several works have also demonstrated the 
benefits of combining PlanetScope and UAV data, providing improved 

estimations of above-ground biomass (Mao et al., 2022), occurrence of 
invasive plant species (Marzialetti et al., 2022), and estimations of leaf 
phenology (Wu et al., 2021). 

Regarding methodological approaches, two main image classifica-
tion techniques have been employed for invasive species detection and 
mapping: pixel-based and object-based (Hussain et al., 2013). 
Pixel-based approaches have traditionally been used for classification, 
and one of the benefits to this, is the capacity to detect small patches of 
plant species or even isolated individuals (Ouyang et al., 2011), allowing 
early mitigation strategies for managing invasive species to be put in 
place. However, the efficiency of these strategies is constrained by 
spectrally complex and mixed information (Hussain et al., 2013). 
However, object-based approaches, perform spectrally homogeneous 
area or object segmentation, integrating textural, shape, and contextual 
information in the classification framework (Mafanya et al., 2017), and 
this method works well with complex datasets. It has been shown that 
these strategies are effective in differentiating herbaceous plant species 
(Ouyang et al., 2011). Despite this, several studies have shown that 
when applied to very high-resolution data, pixel-based approaches still 
outperform object-based methods (e.g., Mafanya et al., 2017; Sampedro 
and Mena, 2018), illustrating their suitability for accurate mapping of 
invasive plant species using these types of data. Within the pixel-based 
classification realm, both machine and deep learning algorithms have 
been widely used for the identification and mapping of invasive plant 
species. Shiferaw et al. (2019) explored the performance of five machine 
learning algorithms for mapping the fractional cover of Prosopis juliflora 
in a dryland ecosystem, highlighting the high accuracies obtained with a 
random forest regressor. Within the domain of deep learning, James and 
Bradshaw (2020) used the U-NET architecture to accurately map shrubs 
of the Hakea genus. 

Despite the wide range of invasive species addressed in the literature, 
and methods and sensors utilized, currently there is limited knowledge 
on the feasibility of combining UAV RGB images and satellite scenes to 
monitor R. rugosa invasions. In addition, very few studies have analyzed 
the ability of machine learning algorithms to predict the occurrence of 
invasive species beyond the geographical scope of training datasets. In 
this study, we aim at tackling the challenges associated with mapping 
the occurrence and extent of Rosa rugosa in coastal areas, developing a 
methodology based on the combination of UAV RGB data and very high- 
resolution multispectral satellite data derived from the PlanetScope 
constellation. Specifically, we used red, green and blue UAV images to 
derive a set of vegetation indices and 3D canopy metrics. We then used 
these to map R. rugosa along the Estonian coast and train a R. rugosa 
fractional cover model based on PlanetScope imagery. Finally, we tested 
model accuracies based on site-by-site and external validation 
approaches. 

2. Materials and methods 

2.1. Study sites 

Estonia’s long and intricate coastline (3794 km) includes a diverse 
mosaic of bays, peninsulas, islands, islets and coastal wetlands (Villos-
lada et al., 2021). Among the various habitats occurring along the 
Estonian coast, sand dunes, Boreal Baltic sandy beaches, and Boreal 
Baltic Coastal Meadows are highly biodiverse and host a range of rare 
and protected vascular plant species, such as Eryngium maritimum, 
Lathyrus japonicus var. Maritimus, and Pulsatilla pratensis. We selected 
seven study sites (Fig. 1), where thickets of R. rugosa occur along the 
coast. We selected the study sites following a gradient of protection 
status, from National Park to areas without protection. An in-detail 
description of the study sites is provided in Table S1 (supplementary 
materials). 

R. rugosa is highly invasive in Estonia and its occurrence was first 
mentioned in Tartu Botanical Garden in 1825 (Kukk, 1999). In 1950s 
there were only two regions where it had spread but nowadays it occurs 
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on most sandy beaches. It has been grown in gardens and planted on 
road sides, therefore it is widely spread in many inland sites. 

2.2. Acquisition of UAV images, satellite images and pre-processing 

We undertook 21 UAV surveys in seven study sites (Fig. 1) using a 
multirotor DJI Phantom 4 RTK, between July 2021 and June 2022. The 
UAV was equipped with an on-board Global Network Satellite System 
Real-Time Kinematics (GNSS-RTK) receiver, which allows for positional 
XYZ-accuracy of ca. 1.5 cm (Nota et al., 2022). All flights were con-
ducted following double-grid pathways at 109 m above ground level, 
which yielded a ground sampling distance (GSD) of approximately 3 
cm/pixel. Overlaps were set to 80%, with a gimbal angle of − 80◦ (i.e., 
oblique flights), and white balance compensation set according to the 
illumination conditions. Moreover, the inclination of the flight grids had 
minor on-site adjustments from the north-south direction in order to 
maximize the batteries’ endurance. The UAV was equipped with a DJI 
FC6310R camera with a 20-megapixel, 1” sensor size, and 8.8 mm focal 
length. The purpose of these flights was to produce othomosaics corre-
sponding to the red, green, and blue bands and to generate a set of 
photogrammetric point clouds and derive canopy metrics. 

We imported the resulting images in Pix4D v.4.3.31®, where the 
RGB orthomosaics and 3D point clouds were built. For this, we selected a 
full tie-point image scale for initial processing, an optimal point density, 
a minimum of three tie-points per processed image, and point densifi-
cation based on half of the image scale (Vafidis et al., 2021). 

Within the same workflow, we created photogrammetric 3D point 

clouds at each study site using the Structure-from Motion (SfM) in 
combination with the Multi-View stereo photogrammetry algorithm 
(SfM-MVS) (Smith et al., 2016), both implemented in Pix4D v.4.3.31®. 
As described by Westoby et al. (2012), the SfM generates 3D point 
clouds from sets of photographs through a three-step process. Firstly, a 
set of common keypoints is detected across the set of images using a 
Scale Invariant Feature Transform (SIFT). Subsequently, camera loca-
tions and orientations are used to extract a low-density 3D point cloud. 
Finally, the 3D point clouds are densified and transformed from a rela-
tive into an absolute 3D coordinate system. This provided an average of 
92.4% of images enabled for processing, a re-projection error of 0.17 
pixels, and a point density of 74.5 points per square meter. Thus, we 
obtained a total of 21 orthomosaics (one mosaic per band per survey) 
and 3D point clouds (one per survey). 

We obtained the satellite images from the PlanetScope satellite 
constellation. PlanetScope satellites are equipped with a four-band 
frame imager with a split-frame NIR filter, acquiring images with an 
orthorectified pixel size of 3.125 m in the blue (455–515 nm), green 
(500–590 nm), red (59–670 nm), and near infrared (780–860 nm) 
wavelengths. These products were previously corrected to bottom-of- 
atmosphere reflectance using the 6SV2.1 radiative transfer algorithm, 
which accounts for a range of atmospheric, surface, and spectral con-
ditions, and applies them to standard atmospheric models with MODIS 
water vapour, ozone, and aerosol data (Frazier and Hemingway, 2021). 
We selected one scene of PlanetScope satellite for each location, refining 
the scene search for 15 days around the date of UAV flight missions, less 
than 10% cloud cover, and complete coverage of study areas. 

Fig. 1. Location of study sites along the Estonian coastline. (a) Rooslepa (b) Nõva, (c) Valkla, (d) Laulasmaa, (e) Neeme, (f) Vainupea, (g) Pärispea.  
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2.3. Predictor variables: Vegetation indices and 3D canopy metrics 

A wide array of visible spectral vegetation indices have been devel-
oped in recent years, primarily based on the notion that healthy vege-
tation reflects a larger amount of light in the green bands compared to 
red and blue in the RGB normalized colour space (Yang et al., 2015; 
Marcial-Pablo et al., 2019). Although less robust than multispectral 
indices, RGB indices allow for the use of less costly field equipment, 
while showing adequate vegetation types and vegetation status 
discerning capabilities (Anderson et al., 2016; De Swaef et al., 2021). 

In this study we selected 10 vegetation indices commonly used in the 
scientific literature (Table S2, supplementary materials). Before 
computing the indices in R v.4.1.3, we subjected the individual bands to 
a two-step normalization process, as described in Marcial-Pablo et al. 
(2019) and Guijarro et al. (2011).  

I) Each individual band is normalized to a 0 to 1 scale using the 
following equations: 

Rn =
R

Rmax
Gn =

G
Gmax

Bn =
B

Bmax  

where Rn, Gn and Bn are the rescaled values of each band, and Rmax, Gmax 
and Bmax are the maximum band values in the o to 255 scale.  

II) Each individual band is normalized in the RGB colour space: 

r =
Rn

Rn + Gn + Bn
g =

Gn

Rn + Gn + Bn
b =

Bn

Rn + Gn + Bn 

In addition to the VIs, we computed the dissimilarity index based on 
the grey-level co-occurrence matrix (GLCM). GLCM dissimilarity esti-
mates the grey level distance between pairs of pixels and quantifies 
similarities and dissimilarities between pairs of pixels (Park and Guld-
mann, 2020). We calculated the GLCM dissimilarity for each study site 
based on the UAV-derived RGB images in the glcm package (Zvoleff, 
2020) in R Studio. 

In an effort to better capture vegetation structure and discern vege-
tation classes (Hantson et al., 2012; da Silva et al., 2022; de Lima et al., 
2022), we also computed nine canopy metrics based on the 3D point 
clouds. Before performing the computations, noise points were filtered 
with statistical outlier removal (SOR) filters, while a cloth simulation 
filtering (CSF) algorithm classified ground points. These operations were 
implemented using the functions classify_noise and classify_ground in the 
lidR package (Roussel et al., 2020) in R. The SOR filter evaluates sta-
tistical parameters in the proximity of each point in the point cloud and 
removes those that lie beyond the set of points’ standard range (i.e., 
standard deviation of the mean). Within the SOR filter, we set the 
number of neighbours to the 50 nearest points and applied one standard 
deviation to exclude outliers. The CSF algorithm inverts the point cloud 
along the z-axis, fits a surface to the inverted cloud, and classifies each 
point as ground or off-ground based on a distance threshold. For this 
procedure, we applied the “Flat terrain” option, enabled slope process-
ing, and the classification threshold to 0.1 (Klápště et al., 2020). We 
adjusted the cloth resolution to 3 m, since it retrieved the best separation 
between ground point and low vegetation for our datasets. Using these 
methods, points were subsequently classified either as “ground” or as 
“non-ground”. For normalization, the terrain elevation was estimated 
using a Triangulated Irregular Network (TIN) algorithm to avoid 
excessive occlusions in the Digital Terrain Model (DTM) (Ward et al., 
2013; Neuville et al., 2021). For the Canopy Height Models (CHM), 
empty cells were filled using the RSAGA’s function “Close Gaps”, which 
uses the surrounding values for the interpolation (Kemper et al., 2022). 

From the normalized point clouds, we calculated the density of 
points, maximum height, mean height, skewness of height distribution, 
and kurtosis of height distribution using the lidR package in R. We used 
the RSAGA package (Brenning et al., 2018) to calculate the Slope, 

Convergence Index (CI), Terrain Ruggedness Index (TRI), and Plane 
Curvature (CPLAN) to provide 3D spatial information for describing 
distinct surface features (e.g., bare soil, water, and vegetation types) 
(Drǎguţ and Blaschke, 2006; Lee et al., 2020). The skewness and kurtosis 
measure the amount of information deviating from the normal distri-
bution (Zhao et al., 2018). The skewness describes the degree of sym-
metry of the distribution, while the kurtosis describes the shape and 
magnitude of the distribution tails. The slope represents the highest rate 
of change in the elevation to the adjacent pixel (Dornik et al., 2018). 
Plane Curvature describes the variation of aspect features in a plane, 
which are related to the concavity-convexity characteristics of surface 
landforms (Drǎguţ and Blaschke, 2006). The Convergence Index mea-
sures the degree of flow convergence-divergence for a pixel within the 
surface model (Dornik et al., 2018). The Terrain Ruggedness Index de-
scribes the difference between the height of a pixel compared to its 
surroundings, representing indexes of local elevation heterogeneity (De 
Reu et al., 2013; Mieza et al., 2016; Nakileza and Nedala, 2020). All 
point cloud-based metrics were generated at a 12 cm spatial resolution 
and using the functions’ default parameters. 

2.4. Landcover classification 

To detect and map coastal areas covered by R. rugosa, as well as 
native vegetation and other landcover classes, we used a training/vali-
dation dataset and a supervised Random Forest (RF) classifier (as per 
Villoslada et al., 2020). The land cover classes used in this study were 
based on the European Environment Agency’s geospatial dataset of 
European ecosystem types (Chytrý et al., 2020). For this, we considered 
the following classes of land cover: Marine habitats (MH), Coastal 
habitats (CH), Grasslands and land dominated by forbs, mosses or li-
chens (G), R. rugosa (RR), Woodland, forest, and other wooded land (W), 
Arable land and market gardens (A), and Constructed, industrial and 
other artificial habitats (C). In addition, we included shadows (S) as a 
separate class. 

Contrary to a presence/absence binary classification, this multi-class 
categorization allows the user to identify classification inaccuracies and 
attribute the source of error, highlighting classes prone to misclassifi-
cation. We used the UAV RGB image to digitize 10 training and 10 
validation samples per landcover class, per site. Each sample consisted 
of a circular polygon of 50 cm diameter, which was subsequently used to 
extract the individual values of all the pixels corresponding to each of 
the explanatory variables. When digitizing the training/validation 
dataset, we incorporated R. rugosa patches belonging to both clumped 
and sparse thickets, in order to ensure an adequate coverage of the po-
tential spectral and morphological range of R. rugosa shrubs within the 
study areas. 

We performed the landcover classification using a RF machine 
learning classifier. We chose RF over other algorithms due to its superior 
performance, its ability to classify spectrally similar plant communities 
(Villoslada et al., 2022) and capacity to deal with high data dimen-
sionality (Cutler et al., 2007). We used the randomForest package (Liaw 
and Wiener, 2002) in R v4.1.3, with the RGB VIs and the canopy metrics 
as input variables. We set the key RF parameters (number of trees and 
number of randomly selected predictor variables at each split) to 500 
and 6 respectively, based on an accuracy assessment through repeated 
cross-validation. 

The resulting maps were validated using the validateMap function 
within the RStoolbox package (Leutner et al., 2017). To validate the 
overall classification accuracy, we selected the commonly used metrics 
overall accuracy and F1-score from caret (Kuhn, 2008) and MLmetrics 
(Yan, 2016) packages in R, respectively. To evaluate per-class accuracies 
and detect potential misclassifications between classes, we utilized 
sensitivity (i.e., the rate of true positives) and specificity (i.e., the true 
negative rate in a confusion matrix; Nhu et al., 2020). 
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2.5. Upscaling 

The near-infrared band included in the PlanetScope constellation 
enables the generation of VIs that are superior to those based solely on 
RGB bands. We took advantage of this and created a set of ten vegetation 
indices (Table 1), selected based on their ability to counteract the effect 
of soil in sparsely vegetated areas (Modified Soil Adjusted Vegetation 
Index and Soil Adjusted Vegetation Index), robustness in vegetation 
density, coverage and biomass predictions (Difference Vegetation Index, 
Green Red Difference Index, Green Difference Index, Normalized Dif-
ference Vegetation Index, Green Normalized Vegetation Index and 
Enhanced Vegetation Index), and good performance in areas charac-
terized by high moisture levels (Green Ratio Vegetation Index) (Villos-
lada et al., 2022). 

In addition to the satellite-derived vegetation indices, we selected 
two variables related to the autecological preferences of R. rugosa: Dis-
tance to the coastline and elevation. These co-predictors constitute 
proxies for salinity, inundation and air humidity, which in turn drive 
R. rugosa distribution (Ööpik et al., 2008). Elevation was derived from 
the airborne LiDAR datasets acquired by the Estonian Land Board, with a 
resolution of 1 m per pixel. 

To upscale the UAV-derived R. rugosa extent to PlanetScope, we used 
a within-pixel fractional cover approach (Riihimäki et al., 2019; Gränzig 
et al., 2021; Fraser et al., 2022). In this method, fractional cover is un-
derstood as the number of UAV pixels belonging to the vegetation class 
under study divided by the total number of UAV pixels within a satellite 
grid cell. Following this rationale, we aggregated the fractional cover of 
the UAV-derived landcover classes within the PlanetScope pixels. We 
first converted the PlanetScope raster images to a vector grid, where 
each vector polygon aligned each raster pixel. We then intersected the 
polygon grid with the UAV-derived vegetation maps, extracted the area 
of each landcover class, and calculated the fractional cover of each class. 
We performed these operations in QGIS Desktop v.3.24.1. 

We predicted the fractional cover of R. rugosa with an Extreme 
Gradient Boosting (XGBoost) regression algorithm. XGBoost has 

consistently outperformed machine and deep learning algorithms in 
regression problems (Zhang et al., 2019; Zhong et al., 2019), and is 
known to be robust to noise and class imbalance (Chen and Guestrin, 
2016). We built the XGBoost model using the raster (Hijmans et al., 
2015) and xgboost packages (Chen et al., 2019) and fine-tuned the 
hyperparameters of XGBoost (learning rate, number of trees, minimum 
number of samples required at a leaf node, maximum depth, the number 
of features for the best split and gamma [γ]) with the mlr package (Bischl 
et al., 2016), using a five-fold cross-validation approach and 100 opti-
mization rounds. To ensure robustness in the upscaling process, we 
iterated the XGBoost algorithm 50 times and averaged the predictions to 
produce the final R. rugosa fractional cover maps. 

We used the VIs derived from the PlanetScope bands and the two 
autecological variables as co-predictors, and the R. rugosa fractional 
cover within the PlanetScope pixels as the training/validation data. 
Finally, we randomly split the dataset into one-half for training and one- 
half for validation. To test the prediction ability of the XGBoost 
upscaling algorithms, we generated two different models. The first 
model (all-sites model hereinafter) used training data from the seven 
study sites and predicted R. rugosa fractional cover in all sites. The 
second model (external validation model hereinafter) used training data 
from all sites except Laulasmaa and predicted R. rugosa fractional cover 
along the coastal fringe of Laulasmaa. 

We validated the XGBoost regression models using the coefficient of 
determination (R2) and the Root Mean Square Error (RMSE) with the 
validateMap function within the RStoolbox package. We used the Gain 
metric to estimate the relative contribution of a feature within the 
XGBoost algorithm based on the total gain of the feature’s splits in the 
model. Higher gain percentage represents a higher predictive power 
(Chen et al., 2019). 

3. Results 

3.1. UAV-based R. rugosa distribution maps 

In the study areas, R. rugosa forms thickets along the coastline, pri-
marily in the upper section of the sandy and rocky shores, adjacent to the 
forest edge (Fig. 2). The degree of encroachment varies between sites, 
from heavily encroached areas where dense thickets suppress the nat-
ural herbaceous vegetation (Laulasmaa), to sparse thickets forming 
mosaics in the sandy beaches, low scrub and herbaceous vegetation 
(Rooslepa) (Fig. 2). 

The RF classifier yielded high overall accuracies, with values of 0.81 
for overall accuracy and 0.75 for F1-score (Table 2). Site-specific accu-
racies yielded slightly divergent results (Table 2), with the lowest ac-
curacies recorded at Valkla (overall accuracy = 0.74 and F1-score =
0.67) and the highest at Nõva (overall accuracy = 0.85 and F1-score =
0.82) and Pärispea (overall accuracy = 0.89 and F1-score = 0.88). The 
per-class accuracies showed the ability of RF to predict R. rugosa, with a 
sensitivity of 0.92 and a specificity of 0.96. Similarly, sensitivity and 
specificity values were high for R. rugosa at all sites (Table 3). Generally, 
specificity was higher than sensitivity for all landcover classes (Table 2). 
The lowest sensitivity recorded corresponded to arable land (0.20). 

Regarding the variable importance, GLCM dissimilarity clearly 
emerged as a crucial co-predictor in the overall RF landcover classifi-
cation (Fig. 3) according to the mean decrease in accuracy. A VI (WI) 
and two canopy metrics (CI and kurtosis of height distribution) also 
contributed substantially to the performance of the RF algorithm. 

3.2. UAV – PlanetScope upscaling 

The correspondence between the R. rugosa fractional cover values 
within PlanetScope pixels and the UAV-based predictions highlighted 
the good performance of the XGBoost algorithm in the all-sites model 
(RMSE = 0.11 and R2 = 0.70, Table 4). However, per-site accuracies 
(Table 4; Fig. S1) revealed contrasting results. For instance, sites with a 

Table 1 
List of vegetation Indices selected to predict R. rugosa fractional cover within the 
PlanetScope pixels. G: green band (500–590 nm), NIR: near-infrared band 
(780–860 nm), R: red band (590–670 nm).  

Vegetation and textural 
index 

Equation Reference 

Chlorophyll vegetation 
index (CVI) 

(NIR/G) × (R/G) Vincini et al. (2007) 

Difference Vegetation 
Index (DVI) 

NIR-αR 
α = 0.96916 

Richardson and Everitt 
(1992), Maguigan et al. 
(2016) 

2-band Enhanced 
Vegetation Index 
(EVI) 

2.5 [(NIR-R)/(NIR + 2.4 R 
+ 1)] 

Jiang et al. (2008), Jin 
et al. (2014) 

Green Difference Index 
(GDI) 

NIR-R + G Gianelle and Vescovo 
(2007) 

Green Normalized 
Vegetation Index 
(GNDVI) 

(NIR-G)/(NIR + G) Gitelson et al. (1996),  
Naidoo et al. (2019) 

Green-Red Difference 
Index (GRDI) 

(G-R)/(G + R) Gianelle and Vescovo 
(2007) 

Green Ratio Vegetation 
Index (GRVI) 

NIR/G Sripada et al. (2006),  
Naidoo et al. (2019) 

Modified Soil Adjusted 
Vegetation Index 
(MSAVI) 

0.5*[2*NIR −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2*NIR + 1)2
√

−

8*(NIR − R)]

Qi et al. (1994), Jin et al. 
(2014) 

Normalized Difference 
Vegetation Index 
(NDVI) 

(NIR-R)/(NIR + R) Rouse et al. (1974) 

Soil Adjusted 
Vegetation Index 
(SAVI) 

[(NIR-R)/(NIR + R + L)](1 
+ L) 
L (soil adjustment factor) =
0.5 

Huete (1988), Ullah et al. 
(2012)  
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very low R. rugosa coverage such as Nõva and Rooslepa, also presented 
lower accuracy values (Nõva R2 = 0.03 and Rooslepa R2 = 0.25). The 
relative contribution of the co-predictors measured by the Gain metric 

highlighted the role of the autecological variables (Fig. 4). Distance to 
the coastline and elevation were ranked as the second and third most 
important variables, with gain scores of 0.12 and 0.10 respectively. The 
most important variable was the Difference Vegetation Index (DVI), 
with a gain score of 0.32. Green Ratio Vegetation Index (GRVI) and 
Modified Soil Adjusted Vegetation Index (MSAVI) were featured as the 
least important co-predictors within the XGBoost regression algorithm. 

Although the upscaling of fractional cover to satellite-level resolu-
tion inevitably smooths the outline and pattern of R. rugosa thickets, the 
high GSD of PlanetScope allows the overall shape of the patches to be 
retained. This is clearly visible in dense thickets, such as those in Viinistu 
(Fig. 4). Small and sparse individuals, such as those present in the 
Vainupea area, were also relatively well captured by the XGBoost 
algorithm. 

Regarding the external validation model, the RMSE values were equal 
to those corresponding the all-sites model in Laulasmaa (0.18, Fig. 5). 
However, the R2 showed considerably lower values for the external 

Fig. 2. Random Forest model predictions for the occurrence and distribution of landcover classes at two contrasting locations: Heavily encroached areas at Lau-
lasmaa (a and b) and sparse distribution of R. rugosa at Rooslepa (d and e). The confusion matrices of each study site are shown in panels (c and f). MH: Marine 
habitats; CH: Coastal habitats; G: Grasslands and land dominated by forbs, mosses or lichens; RR: R. rugosa; W: Woodland, forest, and other wooded land; A: Arable 
land and market gardens; C: constructed, industrial and other artificial habitats; S: shadows. 

Table 2 
Classification accuracies (overall accuracy, 95% confidence interval and F1-score) for the overall classification and each study site using random forest. The table also 
includes the sensitivity and specificity of the R. rugosa classification at each study site.  

Site Overall accuracy 95% CI F1-score Sensitivity R. rugosa Specificity R. rugosa 

Overall classification 0.81 (0.80, 0.82) 0.75 0.92 0.96 
Vainupea 0.80 (0.77, 0.82) 0.80 0.87 0.96 
Laulasmaa 0.80 (0.77, 0.83) 0.77 0.89 0.94 
Neeme 0.82 (0.80, 0.84) 0.74 0.94 0.99 
Nõva 0.85 (0.82, 0.87) 0.82 0.96 0.99 
Rooslepa 0.82 (0.81, 0.85) 0.73 0.90 1.00 
Valkla 0.74 (0.72, 0.76) 0.67 0.97 0.96 
Pärispea 0.89 (0.85, 0.90) 0.88 1.00 0.85  

Table 3 
Per-class accuracy metrics for the overall classification with random forest. MH: 
Marine habitats; CH: Coastal habitats; G: Grasslands and land dominated by 
forbs, mosses or lichens; RR: R. rugosa; W: Woodland, forest, and other wooded 
land; A: Arable land and market gardens; C: constructed, industrial and other 
artificial habitats; S: shadows.   

Landcover classes     

Accuracy 
metrics 

MH CH G RR W A C S 

Sensitivity 0.72 0.92 0.68 0.92 0.93 0.20 0.68 0.81 
Specificity 0.96 0.98 0.96 0.96 0.99 0.99 0.98 0.96  
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validation model (0.40). The comparison of both fractional cover maps 
shows an underestimation of R. rugosa, both in terms of extent and 
fractional cover (Fig. 5). 

4. Discussion 

In this work we demonstrated the effectiveness of combining UAV- 
derived RGB images with high GSD multispectral satellite imagery to 
detect and map the extent of R. rugosa in coastal areas. The UAV-satellite 
fusion methods we present here expand the capabilities of invasive 
species mapping and monitoring beyond the relatively reduced extents 
of UAV-surveyed areas, and provides a robust tool for the quantification 
and management of areas encroached by R. rugosa. Moreover, we 
demonstrate the feasibility of using low-cost RGB sensors, which 
constitute a highly cost-effective monitoring tool for the often budget- 
limited environmental agencies. 

4.1. UAV-based landcover classification and detection of R. rugosa 

The Random Forest model successfully predicted all landcover 
classes under assessment. Sensitivity and specificity showed a particu-
larly high accuracy for R. rugosa, highlighting the robustness of the 
model in predicting the location and extent of thickets of this invasive 
shrub. The accuracies we achieved using RGB images as a basis for the 
model are comparable to those obtained in similar environments using 
multispectral (Marzialetti et al., 2021) and hyperspectral sensors (Kat-
tenborn et al., 2019), highlighting the feasibility of low-cost sensors for 
mapping and monitoring invasive plant species. We highlight the benefit 
of including textural indices and canopy metrics derived from 3D point 
clouds among the model co-predictors, in order to increase prediction 
accuracies. This is supported by the Random Forest variable importance 
metrics (mean decrease in Gini coefficient and mean decrease in accu-
racy), which included GLCM, maximum height, mean height, and kur-
tosis of the height distribution among the key co-predictors in terms of 
model performance. Our findings are consistent with previous publica-
tions that highlight the need to complement spectral information with 
canopy structural data such as those derived from photogrammetric 
products (Kattenborn et al., 2019; Lopatin et al., 2019, 2019de Lima 
et al., 2022) and laser scanning (Hantson et al., 2012; da Silva et al., 
2022). This may be especially true when the source of spectral infor-
mation are red, green and blue bands. In the absence of more sensitive 
spectral ranges such as the near-infrared and red-edge bands, RGB-based 
vegetation indices may fail to distinguish chromatically-similar vege-
tation classes. In this case, canopy metrics provide the necessary infor-
mation to discern canopy structures associated with different species. 

We found minor differences between sites regarding the sensitivity 
and specificity of classification for R. rugosa. We attribute the 

Fig. 3. Contribution of each explanatory variable to the overall performance of the Random Forest classification model for landcover classes. Variable contributions 
are estimated using Mean Decreased Gini (MDG) (a) and Mean Decreased Accuracy (MDA) (b). Higher MDA and MDG values indicate a higher importance of the 
input variable in the classification process. MAX: maximum height, MEAN: mean height, DENS: density of points, SKEW: skewness of height distribution, KURT: 
kurtosis of height distribution, SLOPE: slope of the surface, CI: convergence index, TRI: terrain ruggedness index, CPLAN: plane curvature. 

Table 4 
Overall and site-specific accuracies for the prediction of R. rugosa fractional 
cover using a XGBoost regression algorithm. RMSE: Root Mean Squared Error, 
R2: Coefficient of determination, r: Pearson correlation coefficient.  

Site RMSE R2 

Overall classification 0.11 0.70 
Vainupea 0.12 0.60 
Laulasmaa 0.14 0.66 
Neeme 0.12 0.60 
Nõva 0.04 0.03 
Rooslepa 0.04 0.25 
Valkla 0.10 0.65 
Pärispea 0.17 0.74  
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consistency in classification performance to R. rugosa’s physiognomy. 
The dense, monospecific thickets are characterized by purer and more 
homogeneous spectral signatures compared with other vegetation types. 
The performance of classifiers benefits from the spectral homogeneity 
among the samples of this species, since classification accuracies are 
usually hindered by an increase in species diversity (Villoslada et al., 
2020; da Silva et al., 2022). Moreover, previous research demonstrated 
that the ability to recognize woody species improves with patch size 
(Hantson et al., 2012). The negative effect of spectrum mixing was 
observed in locations where R. rugosa occurred in small patches, such as 
in Rooslepa (Fig. 2), which resulted in a reduced ability to detect this 
species. We argue that R. rugosa thickets and woodlands are character-
ized by more homogenous covers and therefore reduced spectral di-
versity compared to grasslands or gardens (Wang et al., 2018; Conti 
et al., 2021). Consequently, the combination of different data types for 

classifying spectrally similar vegetation types compensated for the 
weakness of RGB indices to describe vegetation structure and, thus, 
enhance its accuracy, which is consistent with previous publications 
(Hantson et al., 2012; Beyer et al., 2019; da Silva et al., 2022). 

4.2. UAV-PlanetScope upscaling of R. rugosa fractional cover 

The XGBoost fractional cover predictions exhibited a high degree of 
agreement with the UAV-derived maps of R. rugosa (RMSE = 0.11, R2 =

0.70), similar to those achieved in recent publications (Marzialetti et al., 
2022). These results confirm the ability of UAV data to provide robust 
training and validation information, which would have otherwise 
required a vast amount of time and resources using field inventory 
procedures. Moreover, satellite-based predictions of R. rugosa fractional 
cover provides a robust tool to extend the scope of assessment beyond 

Fig. 4. XGBoost model predictions for R. rugosa fractional cover within PlanetScope pixels at sites (a) Viinistu, (b) Neeme and (c) Vainupea, along with the 
contribution of each explanatory variable using the Gain metric (d). 
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UAV-surveyed areas, therefore increasing the efficiency of invasive 
species monitoring campaigns. 

In this study, we undertook an exhaustive algorithm performance 
assessment by addressing site-specific accuracies and generating an 
external validation model. Overall accuracy assessments provide a 
comparable estimate of model performance, but fail to reveal potential 
pitfalls and associated sources of error. The per-site accuracy assessment 
unveiled considerable differences in the performance of the XGBoost 
model. The lowest accuracies were recorded at Nõva (RMSE = 0.04 and 
R2 = 0.03) and Rooslepa (RMSE = 0.04 and R2 = 0.25). These two sites 
are characterized by a very low coverage of R. rugosa, which appears as 
small and sparse shrubs, rarely forming thickets. Despite the very high 
GSD of the PlanetScope satellites, the spectral signature of small-sized 
R. rugosa individuals (in some cases down to ca 30 cm wide) may be 
mixed with the surrounding landcover. In contrast, areas where 
R. rugosa forms dense thickets such as Neeme and Valkla showed higher 
prediction accuracies (RMSE = 0.12 and RMSE = 0.10 respectively). 
Sub-pixel spectral and structural heterogeneity are well recognized 
causes for decreased accuracies in classification and regression algo-
rithms (Villoslada et al., 2020; Yang et al., 2020; Burchard-Levine et al., 
2021). Re-balancing the training dataset through synthetic training data 
generation and under-sampling (Branco et al., 2017) could potentially 
improve the accuracy in sites with small and sparse thickets. 

We further tested the robustness of the upscaling approach using an 
external validation model; that is, a XGBoost algorithm trained with data 
from all study sites except the one it was tested on (Laulasmaa). As 
suggested by Kattenborn et al. (2021), an optimal validation approach 
should include fully independent validation data that has not been 
inputted in the model before. Here, we chose an entirely external loca-
tion for this validation, to ensure we could assess the accuracy of frac-
tional cover predictions under different spectral and environmental 
characteristics. As we expected, the accuracies of the external validation 

model were lower than those of the all-sites model (RMSE = 0.18 and R2 

= 0.40). Fig. 5 shows how the external validation model tends to un-
derestimate and homogenize R. rugosa fractional cover in comparison to 
the all-sites model. We attribute the lower accuracies to two different 
aspects. Firstly, the XGBoost model was not trained with data from 
Laulasmaa and therefore did not capture the local spectral and 
morphological variability, resulting in a lower R2 value that indicated a 
reduced ability to explain the variance in R. rugosa fractional cover. A 
second source of error could be attributed to the PlanetScope constel-
lation. The revisit times and patterns of the PlanetScope constellation 
are highly complex and geographically variable (Roy et al., 2021). This, 
combined with lighting inconsistencies and sensor variations within the 
constellation (Csillik et al., 2020) render geographical extrapolations of 
models challenging. Despite the low R2 values, an RMSE of 0.18 in-
dicates the feasibility of the method to extrapolate R. rugosa fractional 
cover predictions beyond the sites used as a source of training data. 
However, the per-site accuracies and underestimations observed in 
Fig. 5 suggest that geographical extrapolations of the model may not be 
achievable in sites characterized by early encroachment stages. 

Regarding variable importance, the Gain metric highlighted the role 
of the Difference Vegetation Index (DVI) in predicting R. rugosa frac-
tional cover. It has been previously shown that DVI is highly sensitive to 
above ground biomass in wetland ecosystems (Gitelson, 2004; Maguigan 
et al., 2016). Distance to the shoreline and elevation scored as the sec-
ond and third most important variables for the XGBoost performance. 
Once again, this supports the notion that spectral data alone does not 
capture the geophysical variables and autecological preferences that 
explain plant species distributions (Villoslada et al., 2021). We argue 
that distance to the shoreline and elevation are closely related to 
moisture and salinity levels (Ward et al. 2014, 2016) and that, these, in 
turn, partly drive the distribution of R. rugosa (Ööpik et al., 2008). 
Previous studies have shown that even in the brackish coastal 

Fig. 5. Comparison of XGBoost model predictions for R. rugosa fractional cover in Laulasmaa using two different training datasets: (a) all-sites model, and (b) external 
validation model. 
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environments of Estonia, microtopography is strongly associated with 
salinity and the distribution of moisture gradients (Ward et al., 2016; 
Villoslada et al., 2021). 

4.3. Implications for management 

Invasive plant species can cause both severe biodiversity and eco-
nomic losses. In Europe, the economic impact has been estimated at ca 
EUR 12 billion per year (Lipa, 2013). Despite global efforts in eradica-
tion (Weidlich et al., 2020), efficient management strategies are hin-
dered by delayed early detection (Tataridas et al., 2022), accurate 
quantification, and insufficient post-eradication monitoring (Foxcroft 
et al., 2017). Here, we propose a framework that supplies spatial in-
formation relevant for R. rugosa management at two scales. At the local 
scale, the UAV-based models provide highly accurate estimations that 
allow for early detection, quantification, and post-restoration moni-
toring. As indicated by Villalobos Perna et al. (2023), UAVs may play a 
crucial role in areas characterized by a low invasion degree, as evi-
denced by our results (Fig. 1). At the regional scale, the fusion of UAV 
and PlanetScope data serves as a tool for estimation of R. rugosa 
coverage. 

The RGB-based framework we propose in this study yielded accu-
racies comparable to those achieved with multispectral and hyper-
spectral sensors (Marzialetti et al., 2021; Kattenborn et al., 2019), 
therefore allowing for cost-efficient mapping of invasive plants species 
using consumer grade UAVs. This is of critical importance for environ-
mental agencies and other governmental bodies, where survey resources 
and personnel are often scarce (Yemshanov et al., 2022). In this regard, 
the advantages of semi-automatic detection, based on machine learning 
algorithms over manual delineation or field inventories are evident. 
Moreover, the robust results of the UAV–based classification in areas 
with very low and fragmented coverage of R. rugosa suggest that this 
approach could be transferred to other invasive plant species in coastal 
areas worldwide, such as those belonging to the Spartina, Phragmites, 
Sporobolus, Acacia, and Carpobrotus genera (Wan et al., 2014; Abey-
singhe et al., 2019; Villalobos Perna et al., 2023). 

5. Conclusions 

In this study we presented a framework to map the extent of Rosa 
rugosa in coastal areas in Estonia combining UAV RGB images and 
PlanetScope multispectral images. At the UAV level, the combination of 
RGB-based vegetation indices and canopy metrics achieved very high 
mapping accuracies, constituting a highly cost-effective tool for agencies 
involved in the eradication of invasive plant species. UAVs equipped 
with inexpensive RGB sensors can achieve accuracies similar to those 
carrying multispectral cameras. Upscaling the UAV-derived R. rugosa 
presence/absence to PlanetScope derived fractional cover provided a 
high overall accuracy of the prediction model. However, we strongly 
recommend addressing site-specific accuracies, in order to identify po-
tential modelling pitfalls particularly in sites with low and fragmented 
cover of invasives. This highlights the need to incorporate training data 
representing a wide range of encroachment stages and move beyond 
single-site assessments in order to operationalize UAV-satellite upscal-
ing approaches. While the majority of publications use in-situ training 
data, we consider that external training/validation models are funda-
mental to fully understand the predictive capabilities of machine 
learning algorithms. Our external training/validation model yielded, as 
expected, lower accuracies than the XGBoost model trained with in-situ 
data, further reinforcing the importance of diverse training datasets. We 
also note that there are some issues with using the PlanetScope 
constellation due to reproducibility as a result of the sensor diversity 
between satellites. In conclusion, we regard the methods presented in 
this paper as an important contribution to the ongoing efforts to control 
invasive plant species worldwide. UAVs in combination with satellite 
data provide an important foundation for improving estimations of 

invasive species coverage and targeted eradication programs. 
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