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A B S T R A C T   

Ecosystem complexity is among the important drivers of biodiversity and ecosystem functioning, and unmanned 
aerial systems (UASs) are becoming an important tool for characterizing vegetation patterns and processes. The 
variety of UASs applications is immense, and so are the procedures to process UASs data described in the 
literature. Optimizing the workflow is still a matter of discussion. Here, we present a comprehensive synthesis 
aiming to identify common rules that shape workflows applied in UAS-based studies facing complexity in eco-
systems. Analysing the studies, we found similarities irrespective of the ecosystem, according to the character of 
the property addressed, such as species composition (biodiversity), ecosystem structure (stand volume/ 
complexity), plant status (phenology and stress levels), and dynamics (disturbances and regeneration). We 
propose a general framework allowing to design UAS-based vegetation surveys according to its purpose and the 
component of ecosystem complexity addressed. We support the framework by detailed schemes as well as ex-
amples of best practices of UAS studies covering each of the vegetation properties (i.e. composition, structure, 
status and dynamics) and related applications. For an efficient UAS survey, the following points are crucial: 
knowledge of the phenomenon, choice of platform, sensor, resolution (temporal, spatial and spectral), model and 
classification algorithm according to the phenomenon, as well as careful interpretation of the results. The simpler 
the procedure, the more robust, repeatable, applicable and cost effective it is. Therefore, the proper design can 
minimize the efforts while maximizing the quality of the results.   

1. Introduction 

There are considerable gaps between field-based and remote sensing- 
based approaches as the field variables differ from those assessed by 
remote sensing techniques. Thanks to a very fine resolution, unmanned 

aerial systems (UASs), also called unmanned aerial vehicles (UAVs), 
remotely piloted aerial systems (RPASs) and informally drones, can help 
to upscale the point or plot field measurements into the landscape scale, 
and potentially to larger areas bridging the gap between field surveys 
and satellite data (Alvarez-Vanhard et al., 2020). UASs are increasingly 
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used in the last decade, becoming an important tool for characterizing 
different aspects/components of vegetation in many ecosystems 
worldwide. The tool is ideal for both research experiments and targeted 
operational use; e.g., in nature protection (Gonzalez et al., 2016; 
Jiménez López and Mulero-Pázmány, 2019; Müllerová et al., 2017a). A 
wide choice of aircraft types (different types of copters or fixed-wings), 
sensors (multispectral, hyperspectral, Light Detection and Ranging - 
LiDAR), procedures and algorithms are available for the acquisition as 
well as the processing and interpretation of data (Colomina and Molina, 
2014; Fig. 1). UAS surveys can thus be customized and designed for a 
variety of applications (Yao et al., 2019). In order to maximize the 
benefits of UAS, it is crucial to choose appropriate system settings, 
design of the field campaign, preprocessing of the data and the algo-
rithms (Tmušić et al., 2020). Considering the research purpose and 
characteristics of the studied ecosystem shows to be likewise important. 

Within vegetation studies, UAS tool is being used for a large variety 
of purposes, including mapping current vegetation state, studying pro-
cesses at the level of ecosystem, community and individual, assessing 
and modelling the plant growth, monitoring and evaluating effects of 
human disturbances and natural disasters such as wildfires, torrential 
floods and insect outbreaks (Anderson and Gaston, 2013; Bailón-Ruiz 
et al., 2018; Calsamiglia et al., 2020; Estrany et al., 2019; Holman et al., 
2016; Michez et al., 2016; Müllerová, 2019; Näsi et al., 2018). Consid-
ering the increasing use of the tool, and the important impact the design 
of the study has on results, many scientists and practitioners emphasize 
the need for standardization to assure harmonizing the UAS data 
acquisition and subsequent processing with the research goal (Manfreda 
et al., 2018). For such standardization, a great variety of UAS-based 
research in the field of vegetation science needs to be synthesized into 
an integrated framework, including the common grounds and 
challenges. 

Here, we present a comprehensive synthesis aiming to categorize 
research and identify common rules that shape workflows applied in 
UAS-based studies facing complexity in ecosystems. Ecosystem 
complexity is regarded as an important driver of biodiversity and 
ecosystem functioning across taxa, biomes and spatial scales (Stein et al., 
2014). The variety of UAS applications in the vegetation heterogeneity 
assessment is immense, and so are the procedures described in the 
literature. Irrespective of the ecosystem, similarities can be found 

according to the research aims (the ecosystem / community / individual 
property addressed). Vegetation properties encompass varying levels of 
heterogeneity in time and space, allowing classification into the 
following major components: (i) composition (covering a topic of 
biodiversity), (ii) structure (such as biomass and stand structure) and 
(iii) status (such as phenology stage and plant stress) (cf. Randlkofer 
et al., 2010). Following the concept of Essential Biodiversity Variables 
(EVB; Jetz et al. 2019), and remote sensing enabled EVBs (Reddy et al. 
2021) these components could be translated into (i) compositional di-
versity (EVB groups of species populations & community composition), 
(ii) structural diversity (EVB group of ecosystem structure) and (iii) 
functional diversity (EVB groups of species traits & ecosystem function). 
All the components cover both static and dynamic processes, with 
different range and dimension of the dynamics. Still commonalities 
within these ecosystem components can be identified. Here, we present 
a synopsis as a general framework of UAS-based vegetation studies 
allowing us to design a UAS survey according to its purpose. We support 
the framework by detailed schemes of individual components, as well as 
examples of best practices of UAS studies covering each of the vegetation 
components and related applications. 

2. General framework of UAS-based vegetation survey 

The characterization of individual components within the frame-
work of the vegetation complexity requires a specific survey design. The 
decision tree in Fig. 2 represents a general framework of vegetation 
surveys using UAS. The studies are divided according to the component 
of vegetation heterogeneity addressed: (1) species composition (pa-
rameters of biodiversity), (2) ecosystem structure (stand volume/ 
complexity), (3) plant status (phenology and stress levels), and (4) dy-
namics (disturbances and regeneration) (see https://www.costh 
armonious.eu/characterizing-vegetation-complexity-with-uas/ and 
Supplement 1 for an interactive workflow). To reach the best quality 
results, the design of the survey including quality of the data and se-
lection of the processing algorithms should be driven by the purpose of 
research and characteristics of the ecosystem property of interest. In-
formation on abiotic conditions (not necessarily derived from UAS sur-
veys) are often essential for the models. Many of the processes are 
dynamic, so the temporal aspects related to abiotic and biotic factors 

Fig. 1. Different platforms and sensors 
in UAS surveys; a) Lighter-Than-Air 
Helikite Balloon with Sony A7RII used 
for renaturation monitoring; b) BRA-
MOR ppk Fixed-Wing with Micasense 
Red Edge used for riparian vegetation 
monitoring; c) DJI Inspire 2 with zen-
muse x5s RGB camera, used for shallow 
water vegetation and beach cast moni-
toring (Palanga, Lithuania), and d) Leica 
Aibot AX 20 with multidirectional 
sensor prototype (5 Sony ILCE-QX1 RGB 
sensors for capturing NADIR and 4 
oblique images). (For interpretation of 
the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   
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need to be added to describe the changes properly. In the Fig. 2., abiotic 
conditions, such as geomorphology, soil properties, climatic conditions 
and hydrology are not included, still they all play a significant role in 
shaping the vegetation heterogeneity and influence the survey design 
(Tmušić et al., 2020). 

The resolution of the UAS survey has to be adjusted depending on 
ecosystem characteristics, i.e. according to species and individuals’ 
similarity and targeted heterogeneity component. The resolution, as the 
similarity, is hereafter considered in the following dimensions: time, 
space and electromagnetic spectrum. For example, when characterizing 
vegetation composition for the purposes of biodiversity assessment, 
monitoring of rare and invasive species, or understanding the processes 
of species coexistence and succession, it is crucial to differentiate among 
the species. Such differentiation will depend on the way the species 
occupy space through time. Furthermore, their intrinsic morphological 
properties will produce specific morphological and spectral signatures 
that can be applied for either species identification or evaluation of their 
status using remote sensing techniques. In case the spectral/textural 
characteristics of co-occurring species are similar, differentiation would 
require higher spectral resolution to increase their spectral separation 

(Chadwick and Asner, 2016; Marvin et al., 2016). In general, the less 
distinct the feature is (e.g. species with a high degree of similarity to the 
surroundings), the more advanced sensors and the more complex 
methodology are required (Fig. 2). The same applies for assessing 
ecosystem structure, where for sparser ecosystems (e.g. sparse arid or 
semi-arid shrublands or tundra), photogrammetric point cloud can be 
sufficient, whereas for denser and more complex ecosystems such as 
forests, advanced LiDAR sensor becomes indispensable for most appli-
cations (Barbosa et al., 2016; Beland et al., 2019; Kent et al., 2015; 
Lefsky et al., 2002). The levels of conspicuousness and symptomaticity 
of the studied phenomenon (e.g. phenological stage and/or physiolog-
ical status caused by stress) influence the required level of spectral/ 
spatial/temporal resolution (Fahlgren et al., 2015; Ghosal et al., 2018; 
Singh et al., 2016) and, again, the sophistication of the analytical 
models. In case of asymptomatic physiological status at visible range, it 
is very difficult to reach satisfactory results unless additional advanced 
hyperspectral or thermal sensors are used (Gago et al., 2017). 

Insufficiently coarse resolution can decrease the accuracy, still more 
detail does not automatically mean better results. Whereas very high 
spatial resolution can be extremely beneficial for detection of small 

Fig. 2. Decision tree for designing the UAS-based vegetation survey according to the phenomenon/part of vegetation heterogeneity addressed. Details on each 
component of vegetation heterogeneity are explained in the following Figs. 3, 4 and 5, and in an interactive workflow at https://www.costharmonious.eu/characte 
rizing-vegetation-complexity-with-uas/ and in the Supplement 1). 
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patches or individual plants, it can tremendously increase the data 
complexity, processing time and data storage. Additionally, increasing 
spatial resolution from centimeters to millimeters can make classifica-
tion extremely difficult, breaking individuals into a complex of branches 
and stems, green and dry leaves, individual flowers within the inflo-
rescence, insects and soil background. Such extreme detail of UAS data 
also brings new challenges in the training and validation process (due to 
the precision limits of field Global Positioning System instruments, 
GPS), and proper matching of layers in case of change detection and 
canopy height models (Müllerová et al., 2017a). The three components 
of resolution, spatial, spectral and temporal, are interconnected, and 
certain trade-offs exist between them (Lisein et al., 2015; Michez et al., 
2016). Thus, optimal resolution should be carefully chosen considering 
the purpose of the study as well as the target vegetation addressed. 

3. The hands-on challenge: How to assess species composition, 
ecosystem structure and plant status by employing UASs? 

3.1. Species composition: Highlighting biodiversity 

Plant species composition varies along the axes of spatio-temporal 
heterogeneity (Lambers et al., 2008; Pugnaire and Valladares, 1999). 
Whereas at coarse scales it is defined by biogeographical zones and bi-
omes, at finer scales, is determined by changes in composition as a 
function of abiotic conditions as well as inter-specific interactions with 
human management and co-occurring plant and animal species (Au-
gustine and McNaughton, 1998; Fedele et al., 2017; Pugnaire and Val-
ladares, 1999). 

Examples where UASs have been used for specific vegetation/habitat 
types show that the challenges are to a certain extent case specific, 
depending mainly on natural characteristics. UASs were successfully 
applied in habitat mapping and monitoring for nature conservation 
purposes. Decisions on which methods and data to choose for UAS 

Fig. 3. Workflow for UAS-based detection of plant species composition (biodiversity, adapted from Müllerová, 2019).  
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assessment of plant composition shall be driven by the target species/ 
vegetation characteristics. For species expressing low spectral and 
structural similarity to the co-occurring species, coarser resolution data 
combined with simple models would be sufficient; whereas for less 
distinct species, highly similar to their surroundings, a more complex 
approach must be applied (Müllerová, 2019). Accurate distinction be-
tween similar species is demanding in respect to the data resolution 
(spatial, temporal and/or spectral) and algorithms (using more complex 
or hybrid approaches); subtle differences in phenology or structure can 
help (Fig. 3). 

For species that do not have a specific form (such as patchiness, and 
shape of individuals, inflorescences or the leaves) but are rather spec-
trally distinct from their surroundings, the pixel based approach might 
be appropriate (Müllerová et al., 2017a; Tamondong et al., 2020). In-
formation on shape, texture and context can markedly improve preci-
sion of the species determination (Franklin, 2018; Gini et al., 2014). This 
is especially true for the species and/or vegetation types that have 
distinct shapes and/or form patches (Müllerová et al., 2017b), and for 
low cost digital Red-Green-Blue (RGB) cameras lacking near infrared 
band and with high intercorrelation of visible bands (Pande-Chhetri 
et al., 2017). In general, OBIA represents a powerful tool in UAS data 
processing that can to some extent reduce the noise and consequent “salt 
and pepper” effect caused by ultra high spatial resolution. However, the 
extreme detail leads to a large number of objects with varying spectral, 
morphological and proximity characteristics, which can be controlled by 
choosing the right spatial resolution (Yuba et al., 2021). 

For complex vegetation patterns and species with a high degree of 
similarity, there is a need for higher spectral/spatial/temporal resolu-
tion data, multiple data sources, three-dimensional (3D) information on 
stand height and structure and/or advanced algorithms (e.g. Kattenborn 
et al., 2020; Martin et al., 2018; Michez et al., 2013). Machine and deep 
learning algorithms are particularly helpful to map complex vegetation, 
and can overcome the problem with laborious collection of training 
samples and ultra high spatial resolution (Liu et al., 2018). 

To summarize, provided that the methodological workflow of the 
mision follows the species/habitat characteristics, UASs represent a 
powerful tool to be employed in biodiversity monitoring schemes, 
enabling assessment of species diversity and detection and mapping of 
individual species and/or habitat types. Thanks to very high spatial and 
temporal resolution, either repeatedly throughout the phenological 
season or using the optimal time window for the data acquisition, it is 
possible to map even the species that are difficult to distinct from the 
surroundings, especially in case information on 3D structure is added, 
several sensors combined and/or sophisticated algorithms of machine 
and deep learning deployed. 

3.2. Ecosystem structure: Measuring biomass, volume and stand 
complexity 

The structure belongs among the main drivers of resource variability. 
Particularly in forest environments, fine-scale information on canopy 
structure derived from UAS like canopy cover, gaps, vertical and hori-
zontal structure and spatial aggregation are important since structure 
drives many ecological processes such as understorey diversity, seed 
establishment, and forest regeneration, and shapes important ecosystem 
services (Bagaram et al., 2018; Getzin et al., 2012; Kent et al., 2015). 

Examples of assessing structure can be found for various ecosystems, 
such as shrublands (Cunliffe et al., 2016; Swetnam et al., 2018) and ri-
parian areas (Meneses et al., 2018), but most UAS studies regard forests. 
In the latter, vegetation structure is addressed to analyse the stand 
complexity or quantify its volume/biomass (Fig. 4). 3D information is 
generated by different sensors and stored as point clouds for further 
processing. Normalization of ground using precise Digital Terrain Model 
(DTM) is greatly recommended (Aguilar et al., 2019). For 3D informa-
tion, both passive (optical) and active (e.g. LiDAR) sensors can be used 
(Camarreta et al., 2020). While 3D information describing the upper 

most canopy layer can be acquired by various sensors, LiDAR sensors are 
necessary for the generation of DTM under the forest canopy and 
assessment of structural layers that is intrinsically related to the stand 
density and complexity. 

Laser scanning provides the most accurate information on structural 
components including height, canopy dimensions, gaps, and biomass, 
and if mounted on UAS it can provide very high spatial details. However, 
its application is still limited due to the high costs and the fact that the 
sampled area is substantially smaller compared to the aerial LiDAR. In 
case of dense stands with complex multidimensional structure, active 
sensors (LiDAR) or DTM-independent approaches are an option (Gian-
netti et al., 2018), whereas passive sensors are not able to penetrate the 
canopy (especially during leaf-on season) to reach the inner structural 
layers and the ground (Kašpar et al., 2021). Still, for less dense and 
complex stands, passive optical sensors represent a low cost and simple 
solution to provide information on forest attributes including height, 
canopy dimensions, and biomass (Baltsavias et al., 2008; Dandois and 
Ellis, 2010; White et al., 2015). Photogrammetric point clouds are 
derived from overlapping imagery by using the digital imaging photo-
grammetry approach such as Structure from Motion (SfM) algorithm 
(Westoby et al., 2012), preferably with high overlap and lower flight 
altitudes (Seifert et al., 2019). 

Still, many issues remain using passive instead of active sensors, 
especially related to closed or vertically complex canopy and shadows 
(Dandois and Ellis, 2013). Precision of results is also species specific; 

Fig. 4. Workflow for UAS-based ecosystem structure assessment.  
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while for evergreen single-stemmed tree species, photogrammetric 
products are comparable to LiDAR in capability to capture forest 
structure and estimate the biomass (especially for regularly designed 
forest plantations and open forests), it is less reliable for deciduous trees 
(especially during leaf-on period) and for canopy cover above 60 to 80% 
(Guerra-Hernández et al., 2017; Wallace et al., 2016). To overcome 
these problems, the data sources can be joined, such as adding spectral 
properties to LiDAR, or combining LiDAR-derived DTM and a series of 
photogrammetrically-derived DSMs to assess changes in the canopy 
(Lisein et al., 2013; Wallace et al., 2016). However, in such cases, precise 
co-registration is required. Alternatively, analyses of forest structure and 
gaps can be based solely on optical properties of UAS imagery, using the 
effect of darker objects (shaded gaps; Bagaram et al., 2018; Getzin et al., 
2014). Nevertheless, such approach might bring even more imprecision 
with dense and/or highly vertically heterogeneous canopies. 

As summarized in Fig. 4, from the examples proposed from different 
communities and environments, the choice of the sensor (active vs 
passive remote sensing) is particularly important for the structural 
assessment, and should respect the complexity of the stand to be 
sampled. 

3.3. Plant status: phenology and plant stress 

Plant status is driven by phenological stage and physiological status 
in response to endogenous (circadian and seasonal rhythms) and exog-
enous factors (abiotic stressors). High spatial and temporal resolution of 

UASs provide an unprecedented detailed insight into the ecosystem’s 
response to (a)biotic stress (D’Odorico et al., 2020). Most of the papers 
using UASs to assess plant stress are performed in agricultural and 
forestry applications focusing only on a single species at a time, while for 
species rich natural ecosystems, such studies are largely lacking (but see 
e.g. Banerjee et al., 2020; Zhang et al., 2017). 

Studied phenomena can range from distinct and well defined phe-
nomena by spectral properties that can be assessed using relatively low 
spatial, temporal and spectral resolution, to the less conspicuous/ 
symptomatic phenomena, where the most sophisticated hyperspectral 
and thermal sensors coupled with complex modelling are needed 
(Fig. 5). In addition, even defining specific factors affecting the partic-
ular plant physiological status might be difficult due to the fact that the 
plant response to different types of stress is often indistinctive (Jones 
and Vaughan, 2010). 

For example, UASs thermal imagery and the related leaf energy 
balance model estimations can be used to detect (a)biotic stress early 
since stomata are highly reactive to any stress, from abiotic stress such as 
drought (Gago et al., 2017) and herbivory attacks (Smigaj et al., 2019). 
In addition, stomata closure promotes general increase in canopy tem-
perature that can be used as a physiological stress indicator (Smigaj 
et al., 2019). Very high spatial resolution of UAS data opens the op-
portunity to assess drought stress at individual level. 

As for phenological stage, UASs provide both very high spatial detail 
and possibility of right timing of the data acquisition to capture a 
particular phenomenon, e.g. flowering (Carl et al. 2017; Müllerová 

Fig. 5. Workflow for UAS-based assessment of plant status.  
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et al., 2017b; de Sá et al. 2018). Unlike the satellite data, UAS surveys 
allow data acquisition on demand and enable to zoom on individual 
plants within the stand, and therefore to study variation within plant 
populations and/or trace the very first or last individuals of particular 
phenophase (Fawcett et al., 2020). Improvements of sensor resolution 
and/or ability of UAS to fly very close to the canopies obtaining sub-cm 
resolution (such as for nano and micro-UASs) are still not widely 
employed even though the spatial information they provide is tremen-
dous. For instance, ultra high spatial resolution enables the detection of 
flowering individuals without the need for higher spectral resolution 
sensors, opening a new opportunity to use micro-UASs to characterize 
ecosystem dynamics (Gago et al., 2020). 

3.4. Ecosystem dynamics: Disturbances and regeneration 

Many natural processes are dynamic, addressing plant composition, 
ecosystem structure or plant status from a temporal perspective. 
Whereas data collection itself follows the workflows suggested in pre-
vious sections depending on the type of ecosystem/phenomenon and 
heterogeneity addressed, a change detection approach is adopted for 
repeated UAS measurements to study the changes in time. Still, we have 
to bear in mind that for different components of heterogeneity 
(composition, structure and status), the dynamics can show different 
ranges and dimensions that must be reflected by the survey design. 

To assess dynamic processes, such as phenological development or 
stress response, the temporal dimension is indispensable. Operational 
satellite data are the most commonly used for this purpose, however due 
to lower spatial resolution they are suitable mostly at global and land-
scape scales and for large homogeneous stands (Berra et al., 2019), and 
their temporal coverage is limited by their revisiting frequency. On the 
contrary, UAS can provide very high spatial and temporal resolution 
(revisiting time), and flexible, frequent and “ad hoc” data acquisition. 
Thus, UASs allow to explore the phenological cycle in unprecedented 
detail, e.g. individual-level phenological patterns and intraspecific 
variation (Fawcett et al., 2020; Park et al., 2019). Because of unprece-
dented fine scales, UAS are also very appropriate for dynamic ecosys-
tems such as riparian areas and river ecosystems (Laslier et al., 2019; 
Michez et al., 2016). 

In case of dramatic events, absence of data is common. Here, flexi-
bility provided by UAS brings immediate revenues, since the surveys 
need to be conducted as soon as possible after the disturbance to support 
the decision-making and prevent further damage. Flights can be con-
ducted immediately, eliminating the risk of injury linked to field sur-
veys, such as in case of forest fires and windthrow (Mokroš et al., 2017; 
Yuan et al., 2015). UASs was also shown to assist in monitoring post-fire 
regeneration (Fernández-Guisuraga et al., 2018; Larrinaga and Brotons, 
2019). 

Insect disturbances in forests act at varying spatial and temporal 
scales, and understanding local dynamics as well as early detection of 
infestation onsets, which can be both facilitated by UAS, are very 
important (Senf et al., 2017). A variety of approaches and sensors were 
applied in UAS analyses of forest infestation dynamics; not only so-
phisticated hyperspectral sensors (Näsi et al., 2018) but also simpler 
sensors, such as multispectral or even low cost consumer grade cameras 
(Cardil et al., 2017; Minařík and Langhammer, 2016). UAS can also 
serve to study natural regeneration of forest after the outbreak (Röder 
et al., 2018). UAS assessment allows more cost-effective monitoring 
compared to the field surveys, and enables to acquire data at very high 
frequency providing observation data about the gradual spectral change 
after the attack. It can therefore be used to estimate the impacts of forest 
defoliation in spatial and temporal terms, for better assessing outbreak 
spread patterns and providing guidance in forest management pro-
grams. For possible extension of monitoring over larger areas, integra-
tion of UAS and satellite data is to be considered. 

4. Research gaps and future perspectives 

Exploring the capabilities of different statistical, spatial, temporal 
and textural settings, UAS represent a huge potential for assisted vege-
tation assessment. There is no doubt that recent technical advances 
significantly increase capabilities and accessibility of both platforms and 
sensors. One such example is the geometrical precision of UAS ortho-
mosaics. Geometric distortions, particularly significant in forest or other 
complex environments (see Ludwig et al., 2020), can to a large extent 
deteriorate reproducibility, complicate the assessment of dynamic pro-
cesses and decrease the power of change detection in general. Even 
though the number and design of ground control points are still an open 
debate in the scientific community (Padró et al., 2019), recent advances 
in affordable miniaturized GPS and on board UAS (such as Real-time 
kinematic - RTK) push the boundaries towards automation and 
increased geometric accuracy without (or with severely limited amount 
of) field work. 

In addition, technological progress is opening brand new opportu-
nities, such as extraction of meaningful information through standard-
ized procedures without a need to be a specialist in the remote sensing 
field, mechanistic models and/or on-the-fly incorporation of ground and 
plant measurements to calibrate the remote sensing models, different 
flight modes (flying closer to the target, longer flights covering larger 
area, penetrating the forest canopy to assess the forest herb layer, 
Hyyppä et al. 2020; Ryddel et al., 2020), autonomous/real-time sensing 
(improving temporal resolution to assess plant stress, detection of non 
forested and eroded areas in tropical rainforest, Cruz et al. 2016), or 
targetless workflows to capture accurate reflectance values (Schneider- 
Zapp et al., 2019). 

However, even though technological advances are expected to 
overcome many limits of current technologies and methodologies, some 
constraints will certainly remain, such as UASs regulations and re-
strictions. Recent harmonization of UASs regulations within the EU will 
definitely foster collaborative efforts and promote competitive devel-
opment in the field. 

5. Concluding remarks 

UASs offer products and applications never imagined just a decade 
ago. However, optimizing the workflow is still a matter of discussion. In 
our review, we summarized and generalized the procedures of UAS- 
based vegetation research. Aiming to provide a framework for optimal 
workflow to characterize vegetation complexity with UAS, we divided it 
by the major components of vegetation complexity: biodiversity, struc-
ture and status, covering also the dynamic processes. We propose a 
general framework and detailed decision trees for each component 
including examples, and synthesize that any UAS survey must be built 
respecting the following steps: (i) get familiar with the phenomenon to 
be studied; (ii) choose suitable UAS and appropriate temporal, spatial 
and spectral resolution; (iii) select either simple or more sophisticated 
processing, classification algorithms and models depending on the 
complexity of the studied phenomenon; and (iv) carefully interpret the 
results considering the weaknesses and limits of UASs methods. During 
the process one must bear in mind that the simpler the procedure, the 
more robust, repeatable, applicable and cost effective it is; proper design 
minimizes the efforts and maximizes the best results, and appropriate 
temporal, spatial and spectral resolution are essential key-points. The 
experimental design must thus be adapted to the studied phenomenon 
and not the other way around. Still, even if UAS technology is capable 
and widely available, a combination of profound ecological background 
(Goddard et al., 2021) and robust knowledge on the limits of UAS 
technology are indispensable to avoid misinterpretation of the findings. 
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Jiménez López, J., Mulero-Pázmány, M., 2019. Drones for conservation in protected 
areas: present and future. Drones. 3 (1), 10. 

Jones, H.G., Vaughan, R.A., 2010. Remote Sensing of Vegetation: Principles, Techniques, 
and Applications. Oxford University Press. 
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J. Müllerová et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.ecolind.2021.108156
https://doi.org/10.1016/j.ecolind.2021.108156
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0005
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0005
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0005
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0005
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0010
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0010
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0010
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0015
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0015
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0020
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0020
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0020
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0025
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0025
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0025
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0030
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0030
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0030
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0035
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0035
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0035
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0040
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0040
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0045
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0050
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0050
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0050
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0055
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0055
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0055
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0060
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0060
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0060
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0060
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0065
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0065
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0065
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0070
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0070
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0075
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0080
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0080
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0085
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0085
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0090
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0090
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0095
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0095
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0095
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0100
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0105
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0105
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0105
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0110
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0115
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0115
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0115
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0115
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0120
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0120
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0125
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0130
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0130
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0135
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0135
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0135
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0140
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0140
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0140
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0145
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0150
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0150
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0150
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0150
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0155
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0155
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0160
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0160
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0160
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0165
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0165
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0165
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0170
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0170
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0170
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0175
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0175
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0175
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0180
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0180
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0180
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0185
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0185
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0185
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0190
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0190
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0190
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0195
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0200
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0200
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0200
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0205
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0205
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0205
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0210
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0210
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0215
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0215
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0220
http://refhub.elsevier.com/S1470-160X(21)00821-9/h0220


Ecological Indicators 131 (2021) 108156

9

microclimate models based on ground measurements with active and passive remote 
sensing. Remote Sens. Environ. 263, 112522. 

Kattenborn, T., Eichel, J., Wiser, S., Burrows, L., Fassnacht, F.E., Schmidtlein, S., 2020. 
Convolutional Neural Networks accurately predict cover fractions of plant species 
and communities in Unmanned Aerial Vehicle imagery. Remote Sens. Ecol. Conserv. 
6 (4), 472–486. 

Kent, R., Lindsell, J.A., Laurin, G.V., Valentini, R., Coomes, D.A., 2015. Airborne LiDAR 
detects selectively logged tropical forest even in an advanced stage of recovery. 
Remote Sensing. 7 (7), 8348–8367. 

Lambers, H., Chapin III, F.S., Pons, T.L., 2008. Plant Physiological Ecology. Springer 
Science Business Media. 

Larrinaga, A.R., Brotons, L., 2019. Greenness indices from a low-cost UAV imagery as 
tools for monitoring post-fire forest recovery. Drones. 3 (1), 6. 

Laslier, M., Hubert-Moy, L., Corpetti, T., Dufour, S., 2019. Monitoring the colonization of 
alluvial deposits using multitemporal UAV RGB-imagery. Appl. Veg. Sci. 22, 
561–572. 

Lefsky, M.A., Cohen, W.B., Parker, G.G., Harding, D.J., 2002. Lidar remote sensing for 
ecosystem studies: Lidar, an emerging remote sensing technology that directly 
measures the three-dimensional distribution of plant canopies, can accurately 
estimate vegetation structural attributes and should be of particular interest to 
forest, landscape, and global ecologists. Bioscience 52 (1), 19–30. 

Lisein, J., Michez, A., Claessens, H., Lejeune, P., 2015. Discrimination of deciduous tree 
species from time series of unmanned aerial system imagery. PLoS ONE 10 (11), 
e0141006. 

Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., Lejeune, P., 2013. A photogrammetric 
workflow for the creation of a forest canopy height model from small unmanned 
aerial system imagery. Forests. 4, 922–944. 

Liu, T., Abd-Elrahman, A., Morton, J., Wilhelm, V.L., 2018. Comparing fully 
convolutional networks, random forest, support vector machine, and patch-based 
deep convolutional neural networks for object-based wetland mapping using images 
from small unmanned aircraft system. GIScience Remote Sensing. 55 (2), 243–264. 

Ludwig, M., Runge, C.M., Friess, N., Koch, T.L., Richter, S., Seyfried, S., Wraase, L., 
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