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Abstract 

Background  Chemical pollution forms a severe threat for human and environmental health. While the risks for 
European lowland water bodies are well known, there is little knowledge on remote aquatic ecosystems and particu-
larly mountain lakes, despite their importance for the provision of freshwater. Here, we critically review the current 
knowledge on the exposure and risk by chemical pollution for mountain lakes and present a tiered approach on how 
to advance effectively our understanding in the future.

Results  Generally, pollutant monitoring data are currently incomplete, with many regions and substances having 
been only poorly investigated. More reliable data exist only for persistent organic pollutants (POPs). However, there 
is increasing evidence that even remote mountain lakes are exposed to a wide range of organic pollutants. Among 
them potent pesticides currently used in agricultural and biocidal applications, such as diazinon and permethrin. The 
exposure of mountain lakes to pollutants follows a complex pattern. Pollutants are introduced into mountain lakes via 
the atmospheric deposition and run-off from the watershed, but also local sources, like tourism and pastoralism. Our 
risk assessment and recent biomonitoring studies suggest that there are widespread chronic toxic risks on crustacean 
in mountain ranges. If mountain ranges are exposed to tourism and pastoralism, even acute toxic effects on crusta-
cean are possible. Thereby, the vulnerability of mountain lakes to toxic effects has to be expected to be particularly 
high due to the harsh environmental conditions at high altitudes, the organism’s traits, the insular position of moun-
tain lakes and a lower species richness with increasing altitudes. Furthermore, there is little knowledge on the biologi-
cal processes leading to the degradation of chemical pollutants under the environmental and ecological conditions 
of mountain ecosystems.

Conclusion  While the exposure and sensitivity of mountain aquatic ecosystems is currently poorly investigated, the 
existing data suggest that it is very likely that also water bodies as remote as mountain lakes do suffer from pollution-
induced toxicity. To verify this suggestion and expand the existing knowledge, it is necessary that future studies 
combine a more holistic pollution monitoring with exposure modelling and links to biological effects. Only then will it 
be possible to obtain a more reliable understanding of the impact of chemical pollution on aquatic mountain ecosys-
tems and to protect these fragile ecosystems.
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Introduction
Human activities are degrading ecosystems to an extent 
that they become dysfunctional and lose their capac-
ity to provide ecosystem services [1–3]. One of the most 
important ecosystem services is the provision of drink-
ing water. Freshwater provision is also at the basis of 
numerous other ecosystem services, such as agricultural 
production, tourism, and the production of construc-
tion material. Mountains are the water towers of the 
world and provide freshwater to more than half of the 
world’s population [4]. Protecting the health of moun-
tain catchments is thus essential to safeguard the provi-
sion of high-quality freshwater and human well-being. 
A central characteristic of many mountain catchments 
are lakes. Mountain lakes are present in most mountain 
ranges, where they act as freshwater storage basins and 
are generally very biodiversity rich in comparison to ter-
restrial habitats [5]. They are, however, highly sensitive to 
anthropogenic impacts like chemical and nutrient pol-
lution, climate change and habitat destruction, which in 
synergy put them at risk to become dysfunctional and to 
degrade their ecological state [5–7].

At low altitudes, the pollutants emitted by agricultural, 
urban, and industrial activities are known to degrade 
the ecological state of the aquatic environment [8, 9]. 
With increasing altitude, these sources are considered to 
become less, which should result in a limited exposure 
towards chemical pollution and hence no degradation of 
mountain water bodies by organic chemicals. However, 
at the example of the Arctic and Antarctic, it has been 
shown that atmospheric long-range transport and marine 
currents [10], as well as migrating species [11, 12], cause 
a global pollutant spread. As a result, organic chemicals, 
and persistent organic pollutants (POPs) in particular, 
have accumulated in arctic regions and impact wildlife 
and human health [13, 14]. In mountains, local economic 
activities, such as tourism [15], recreational angling [16], 
the exploitation of natural resources [17] and pastoral-
ism [18, 19] have the potential to introduce or release 
pollutants into mountain lakes. Since the distance to 
source regions in many mountains is much shorter than 
in the arctic, also less persistent chemical pollutants (e.g., 
agricultural pesticides) enter mountain environments 
by atmospheric transport [20]. Furthermore, mountain 
lakes appear to be particularly vulnerable to chemical 
pollution, due to very harsh living conditions [6, 21] and 
the short and unbranched food webs that are character-
ized by specialized and sensitive top predators, such as 
amphibians, birds of prey, and introduced fish [21]. As a 
result, organic chemicals do not only lead to a widespread 
degradation of aquatic ecosystems at low altitudes [8, 9], 
but also in the mountain environment to a yet unknown 
extent.

Chemical pollution drives important changes in moun-
tain lakes and disturbs their sensitive ecological equi-
librium. With increasing impact and degradation, these 
ecosystems will become more and more dysfunctional, 
reducing their ability to provide the ecosystem service 
of clean drinking water. To mitigate this risk, it is essen-
tial to strengthen our knowledge on the exposure to and 
impacts by complex chemical mixtures on mountain 
lakes. Therefore, it is important to go beyond data-rich 
regions, like the lowland water bodies of Europe and 
North America, and collect more data on the impact of 
pollution on remote water bodies, like mountain ecosys-
tems [22, 23].

Here, we synthesized the current knowledge on the 
exposure to and risk by chemical pollution in mountain 
lakes. This has been done along different lines of evi-
dence including: (i) a toxic unit (TU) based assessment 
of mixture toxicity risks under the use of existing expo-
sure monitoring data [24, 25]; (ii) the discussion of plau-
sible pathways of exposure via atmospheric deposition 
and from local sources; (iii) the collection of evidence on 
toxic impacts in mountain lakes; and (iv) the discussion 
of habitat characteristics possibly enhancing the vulner-
ability of mountain lake ecosystems.

Mixture toxicity risks based on monitoring data
To assess the toxic risk for aquatic organisms in moun-
tain lakes by chemical pollution, a dataset with water 
monitoring data was compiled, including 17 studies pro-
viding water concentration data (Table  1; Fig.  3). Addi-
tionally, one study could be found that offered surface 
sediment pollution data for 14 lakes in the Sierra Nevada 
Mountains (California, USA) and allowed for the calcula-
tion of equilibrium water concentrations, as also the total 
sediment organic carbon content had been determined 
(Additional file 1) [26]. However, water monitoring data 
on the contamination of mountain lakes with organic 
chemicals were scarce and scattered.

The obtained dataset includes data on a total of 36 dif-
ferent lakes of 11 different mountain ranges and coun-
tries, extending from the year 1994 to 2018. Most studies 
were performed in the Sierra Nevada Mountains, the 
Rocky Mountains, and the Pyrenees. Investigated were 
very small (0.1 ha) to very big lakes like Nam Co Lake in 
Tibet (201500 ha). Thereby, the presence of a total of 174 
compounds was reported, including 16 legacy pesticides 
and their degradation products, 51 current-use pesti-
cides (15 herbicides, 24 fungicides and 12 insecticides), 
21 PAHs, 15 PCBs, 9 brominated diphenyl ethers (BDEs) 
that are used as flame retardants, 4 pharmaceuticals, 5 
compounds commonly used in sunscreens and 53 com-
pounds of various uses. In the most holistic monitoring 
study, passive sampling was combined with an extensive 
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Table 1  Overview of studies documenting water concentration data for mountain lakes from different parts of the world

Mountain 
range

Country Publication Sampling 
methoda

Substancesb Lake Sampling year Altitude (m) Size (ha)c

Sierra Nevada US Datta et al. [32] 180L SW from 
vessel in SST

PCBs Tahoe 1995 1897 49620

Marlette 1995 2500 55

Noir et al. [33] 4L SW in glass OCs Crescent mead-
ows

1997 2042 NA

Tablelands 1997 3231 NA

Sixty lakes basin 1997 3322 0.9

Moro creek 1998 823 NA

Bradford et al. 
[34]

100L direct SPE OCs, CUPs Frog 2003 3091 1

E. Marjori 2003 3550 4

Gorge of 
despair

2003 3042 2

Wright 2003 3645 17

Bradford et al. 
[26]

Hand corer at 
1 m depth (sedi-
ment)

OCs, CUPs, PCBs, 
PAHs

60-lake 2005 3225 0.2

9-lakes 2005 3189 6

Bench 2005 3299 3

Beville 2005 2786 0.1

Blue Cyn 2005 3241 0.2

Forgotten 2005 3262 0.7

Gorge 2005 3188 0.4

Laurel 2005 3177 0.5

Observat 2005 3207 10

Ouzel 2005 3338 0.2

Palisades 2005 3260 0.1

Tableland 2005 3243 0.1

White chief 2005 3120 1

Wright 2005 3375 0.8

Rocky M Canada Donald et al. [35] 40L, 5 m depth, 
centre of lake

Chlorobornane Emerald 1994 1300 116

Cabin 1994 1219 32

Maligne 1994 1671 2066

Blais et al. [36] 72L in SST OCs Annette 1994 1019 29

Bow 1998 1940 280

Wilkinson et al. 
[37]

70L SW in alu 
tank, sampled 
from shore

OCs Bow 1998 1999 2000 1975 320c

Kananaskis 2000 1667 780c

Dixon Dam 2000 946 43030§

Kinbasket 1999 770 1760§

Pyrenees Spain Vilanova et al. 
[38]

100L from 
several depths, 
direct SPE

OCs, PCBs Redon 1996 1997 1998 2240 24

Fernandez et al. 
[39]

100L several 
depths

OCs Redon 2000 2001 2240 24

Santolaria et al. 
[40]

5L SW, middle 
of lake

BDE, PAHs, OCs, 
PCBs

Sabocos 2011 2012 2014 1905 9.3

Machate et al. 
[19]

Passive sampling OCs, CUPs, PCBs, 
PAHs, BDEs, 
Personal care 
products, etc.

Ansabere 2018 1850 0.2
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target screening of 479 substances, including chemicals 
potentially introduced via local sources and atmospheric 
deposition (Table  1, Machate et  al. [19]). Most other 
studies focused only on POPs. The best investigated 
substances, which have been investigated in more than 
6 different studies and mountain ranges, are hexachlo-
robenzene (HCB), alpha-endosulfan, beta-endosulfan 
and endosulfan sulfate, as well as alpha and gamma-
hexachlorocyclohexane (HCH). Only 16 substances have 
been investigated in more than two mountain ranges. 

This includes six PCBs, nine legacy pesticides and 
their metabolites, as well as one current-use pesticide 
(chlorpyrifos).

The available water pollution concentration data were 
used to estimate the existing toxic risk for algae and crus-
tacea, two organisms of central importance in mountain 
lake food webs [6]. Toxic risks were assessed by calculat-
ing the individual TU for each compound at each site and 
finally these individual TUs per site were added together 
to obtain a cumulative TU, representing the mixture 

Table 1  (continued)

Mountain 
range

Country Publication Sampling 
methoda

Substancesb Lake Sampling year Altitude (m) Size (ha)c

Acherito 2018 1880 6.0

Puit 2018 1880 0.2

Ayes 2018 1714 2.0

Belonguere 2018 1907 0.1

Coueyla Gran 2018 2159 0.5

Madamete Bas 2018 2307 0.1

Gourg de Rabas 2018 2400 1.0

Alps Austria Vilanova et al. 
[38]

100L from 
several depths, 
direct SPE

OCs, PCBs Gossenkölle 1996 2417 2

Austria Gossenkölle 1997 2417 2

France Nellier et al. [41] 60L SW & DW PCBs Muzelle 2012 2013 2115 10

France Plan Vianney 2012 2013 2250 5

Tatra M Slovakia Fernandez et al. 
[39]

100L several 
depths

OCs Ladove 2000 2057 2

Caledonia M Norway Vilanova et al. 
[38]

100L from 
several depths, 
direct SPE

OCs, PCBs Øvre 
Neådalsvatn

1998 728 50

Southern Alps New Zealand Wu et al. [42] 800L subsurface 
water direct SPE

OCs Brewster lake 2014 2015 1700 2

Nyenchen 
Tanglha M

Tibet Ren et al. [43] 200L SW, direct 
SPE

OCs, PAHs, PCBs Nam Co lake 2014 4718 201,500

Ren et al. [44] 200L SW, direct 
SPE

OCs, PAHs, PCBs Nam Co lake 2013 4718 201,500

Himalaya Nepal Galassi et al. [45] 5L OCs, PCBs Lake Inferior 1994 5067 2

Guzzella et al. 
[46]

2L SW in glass 
container

OCs, PAHs, PCBs Lobuche 152 2007 4893 NA

Lobuche 14 2007 4893 NA

Lobuche 12/13 2007 4968 57c

Lake Pyramid 10 2007 5053 2c

Lake Pyramid 9 2007 5215 0.6c

Kalapattar 7 2007 5293 0.2c

Volcanoe Poas Costa Rica Shunthirasing-
ham et al. [47]

10-20L SW in 
SST

OCs Laguna Botos 2009 2580 10c

Volcanoe Barva Laguna Barva 2009 2840 1c

SW surface water; DW  deep water; SST  stainless steel tank; SPE  solid phase extraction: OCs organochlorine pesticides; CUP current-use pesticide; PAH  polyaromatic 
hydrocarbon; PCB  polychlorinated biphenyl; NA Not Assessed lakes could not be identified in google image
a Shortforms
b Shortforms
c Size of lake was estimated via google maps
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toxic risk at a given site at a certain time point based on 
the compounds analysed (Eq. 1) [19, 24, 25]:

where ci,water is the water concentration of the analyte i 
and ECx is its effect concentration ( EC ) at level x . ECs 
were calculated as the 0.05 quantiles (Q 0.05) of the effect 
levels that could be obtained from the US EPA ECOTOX 
Knowledgebase (release version 09 December 2019) for 
exposure times of up to 120 h and including data on no 
observable effect levels (NOEL), the lowest effect levels 
(LOEL), and EC10 up to EC90 for algae and crustacea 
[27, 28]. If no measured entry was available, the EC50-
value was estimated by using the baseline ECOSAR 1.0 
type model [29, 30] in ChemProp v6.7.1 [31]. For this 
the baseline ECOSAR-type QSAR was used, whereat the 
QSAR was group-specific [28]. All ECs used during the 
assessment and their origin can be found in AF sheet 4. 
To assess the likelihood of adverse effects and display the 
risk that has been caused by the individual compounds, 
TUs and ΣTUs were compared with thresholds for acute 
(0.1 TUs for both organisms) and chronic (0.02 TUs for 
algae; 0.001 TUs for crustacea) toxic effects [8].

In a comprehensive investigation of a broad range of 
chemicals in Pyrenean lakes [19] mixture risks of 1 × 10–3 
to 0.01 ∑TUs were reported for algae. Thus, maximum 
mixture toxic risk approaches about 50% of the thresh-
old assumed for chronic toxicity (0.02 TUs). Considering 
uncertainty, due to non-analysed mixture components, 
temporal deviations and uncertainties related to sam-
pling and analysis, a factor of 2 is a tiny buffer even if the 
findings do not support a chronic risk based on the ana-
lytical results. For crustacea, TUs ranged from 1 × 10–3 
to 0.25 ∑TUs, thus exceeding the thresholds for acute 
(0.1 TUs) and chronic toxic risks (0.001 TUs) in 25% and 
100% of their samples. In this study, the drivers of tox-
icity towards crustacea were the insecticides diazinon, 
and permethrin. For the remaining studies, which only 
assessed relatively small sets of pollutants, the mixture 
toxic risk ranged from 8.9 × 10–8 to 0.08 ∑TUs for algae 
and 3.4 × 10–7 to 9.5 ∑TUs for crustacea with a median 
of 6.7 × 10–6 ∑TUs and 1.4 × 10 −4 ∑TUs, respectively 
(Fig. 1; AF sheet 4). The thresholds for acute and chronic 
toxic risks to crustacea were breached in 3 and 29% of the 
samples. Based on their median TUs, the main drivers of 
toxicity towards crustacea are the insecticides diazinon, 
malathion and chlorpyrifos with 3.4 TUs (detections 
n = 4), 0.16 TUs (n = 1) and 0.03 TUs (n = 34), respec-
tively. Also, the flame-retardant BDE 209 reveals a rela-
tively high median of 0.03 TUs (n = 4). The calculated 
TUs for algae never exceeded the thresholds for acute 
toxic risks, and only in 2% of the samples the thresholds 

(1)
∑

TU =

∑ ci,water

ECxi

,

for chronic toxic risks were exceeded. The highest 
median toxicity was caused by the flame-retardant BDE-
209 with 0.03 TUs (n = 4). In individual cases, also the 
two herbicides triallate and trifluralin contributed slightly 
higher amounts of TUs.

In the following paragraphs, the here obtained risk 
information will be compared towards the results of the 
currently most comprehensive risk assessment on the 
risk for mountain lakes by organic chemicals [19] and 
discussed in the context of the currently available knowl-
edge on organic chemicals in mountain lakes.

Atmospheric deposition causes chronic toxic risks
The concept of organic chemicals being effectively trans-
ferred from metropolitan, industrial and agricultural 
areas into the mountain environment via atmospheric 
long- and medium-range transport is well established 
[20, 21]. The wet and gaseous deposition of more vola-
tile compounds, as well as the deposition of particles 
carrying chemicals of little volatility (e.g., current-use 
pesticides), can lead to a direct introduction of organic 
chemicals from the atmosphere into mountain lakes 
(Fig.  2) [48]. As a result, mountain aquatic ecosystems 
closer to urbanized regions are exposed to a wide vari-
ety of POPs and PAHs, current-use agricultural pesti-
cides, musks, and various other chemicals [19, 40, 49]. It 
has been described that, due to the colder temperatures 
at higher altitude, precipitation acts as an effective pump 
for water-soluble compounds from the atmosphere into 
mountain lakes and their catchment [50]. The water–air 
partitioning coefficient (Kwa) is a measure of how eas-
ily a compound can disperse between air and water and, 
therefore, influences the tendency of a compound to 
undergo wet deposition. Chemicals with a Kwa between 
3.5 and 4 have the highest potential to be scavenged by 
precipitation and thus the highest mountain contamina-
tion potential [51, 52]. These chemicals are sufficiently 
volatile to reach high altitudes, as they are not efficiently 
scavenged by precipitation at moderate temperatures 
at lower altitudes, while at the same time not being too 
volatile to not being scavenged at colder temperatures 
at high altitudes. In addition to the direct deposition of 
organic chemicals from the atmosphere into the lakes, 
chemicals can also be deposited onto the surface of the 
catchment and consecutively be transported downslope 
into the next mountain lake [20]. This especially becomes 
effective when temperatures are cold enough that precip-
itation occurs in the form of snow. Snow possesses a scav-
enging efficiency that is higher for most compounds and 
especially for larger, non-polar organic compounds, than 
the one of rain [51, 53]. Furthermore, it allows for the 
accumulation of larger amounts of precipitation in form 
of snow and ice in mountain catchments, along with the 
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pollutants associated to them [42, 50, 54]. This way snow 
leads to an increased transport and build-up of organic 
pollutants in the mountain environment. As these pol-
lutants are then released into downstream lakes quicker 
than the time it took for them to build up—either dur-
ing the melting of seasonal snowpacks [54–56] or the cli-
mate change-driven ice melt of glaciers [42, 57, 58]—this 
leads to a higher exposure and hence risk for mountain 
lakes by organic chemicals than during other precipita-
tion events (e.g., rain and fog). For glaciers, for example, 
it has been shown that the organic chemicals contained 
in their meltwater can pose a toxic risk to aquatic inver-
tebrates [59]. This can be assumed to occur in the same 
or even higher extent during mountain spring-season, 
when pollutants accumulated in seasonal snowpacks are 
released within a relatively short period of time and thus 
more rapidly than from glaciers, thereby endangering 
biodiversity.

Various factors influence how exposed a certain 
mountain lake is towards atmospheric pollutants, 

whereat the proximity towards pollution sources is the 
most important [50]. Since pollution levels in moun-
tain lakes are closely related to those in the atmos-
phere [60] and air quality is worse in closer proximity 
to source regions [50], mountain slopes and lakes adja-
cent to regional source regions show considerably 
higher levels of pollution compared to slopes averted 
or remote to source regions [61–63]. In addition, also 
climatic parameters are of importance when trying to 
understand the exposure of mountain lakes. Gener-
ally, lowering temperatures and rising precipitation 
with increasing altitude (Fig.  2) favour the deposition 
and accumulation of chemical pollutants at higher 
elevations, which is suggesting increasing chemical 
concentrations towards the mountain summit. In the 
actual mountain environment, however, this pattern 
has not been found consistently [20]. Likely source 
proximity, the complex mountain terrain, which leads 
to an uneven distribution of precipitation and incom-
ing air within a given mountain range [64, 65], together 

Fig. 1  Toxic risk by organic chemicals for crustaceans and algae in mountain lakes. TUs calculated from water concentrations stated in various 
studies (Table 1, except Machate et al. [19]) investigating the chemical pollution of mountain lakes from different parts of the world. “Mixture” 
displays the predicted mixture toxic risk of all compounds that have been measured at a given site (∑TUs). Below, the individual toxic risks caused 
by each individual compound is displayed (TU) and they were sorted according to their median TUs (increasing from bottom to top). Thresholds for 
chronic and acute toxic risk are displayed in the form of a dashed and solid grey line, respectively
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with the compound and lake properties [20, 66], lead 
to complex and variable pollutant distribution. Cur-
rent knowledge [67, 68] suggests that lower altitudes 
are more influenced by regional emissions (e.g., cur-
rent-use pesticides) via regional air circulations that 
are facilitating medium-range atmospheric transport. 
Alpine regions, in contrast, are predominantly affected 
by long-range atmospheric transport that is introduc-
ing more persistent substances or particle bound com-
pounds. Accordingly, in most cases mountain lakes at 
high altitudes, and/or located in mountains remote to 
urban activities, can be expected to be less polluted by 
atmospheric pollutants than mountain lakes at lower 
altitude and/or greater proximity to human activi-
ties [33, 69]. While this suggests a higher toxic risk 

for mountain lakes at lower altitudes, this also implies 
that even remote (alpine) mountain lakes are exposed 
to and potentially at risk by organic chemicals released 
at lower altitudes. In addition to the spatial differences, 
temporal fluctuations of atmospheric transport and 
pollutant levels are further complicating the pollution 
patterns in mountain areas. Seasonal shifts in climate 
and air circulation, as well as pollutant source activ-
ity, cause temporal variations in atmospheric pollutant 
levels and deposition processes [20]. Furthermore, sea-
sonal and climate change-driven temperature fluctua-
tions also cause events like the seasonal snowmelt and 
influence the properties of the lakes (e.g., no interaction 
with the atmosphere while being covered with ice). As a 
result, pollutant levels in mountain lakes fluctuate over 

Fig. 2  Atmospheric transport of organic pollutants into mountain environments, and the input and loss of organic chemicals from the waters of 
mountain lakes. Included pollutants sources are atmospherically deposited pollutants that directly or indirectly introduced into mountain lakes, as 
well as pollutants from local activities like pastoralism and tourism. Not displayed are degradation processes or topographic and climatic features 
that can also affect pollutant transport and deposition, as well as their accumulation in lakes. LRAT​ long-range atmospheric transport; MRAT​ 
medium-range atmospheric transport; and SRAT​ short-range atmospheric transport (e.g., local wildfires)
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time and are difficult to predict. To correctly evaluate 
the risk for aquatic habitats in mountains by the atmos-
pheric deposition of organic chemicals is therefore 
challenging.

Based on the risk assessment by Machate et  al. 
[19]─which provided new insights into the diversity of 
organic chemicals that can be found in mountain lakes by 
using a time-integrated sampling method and covering a 
large spatial extent of the French Pyrenees—the levels of 
organic chemicals introduced via atmospheric deposition 
are sufficiently high to cause chronic toxic effects towards 
crustacea in all lakes under investigation. Also when 
looking at the results of the here performed risk assess-
ment, almost one third of the investigated lakes experi-
ence a chronic toxic risk. Taking into account that most 
of the considered studies only included a relatively small 
set of target pollutants (mostly POPs) and utilized grab 
samples, thereby neglecting relevant drivers of toxicity 
(e.g., chlorpyrifos) (Fig.  1) and temporal variations, it is 
very likely that the actual toxic risk is higher than pre-
dicted here. Furthermore, water concentration data are 
missing for mountain lakes and regions that are known to 
be considerably polluted with organic chemicals (Fig.  3, 
details in Additional file  1). This applies for example to 
the Tatra mountains. Studies investigating their pollution 
history revealed sediment burdens with PAHs and DDT 
that are similar to those of urban areas and higher than 
what has been discovered in other mountain lakes [70–
72]. Therefore, it cannot be ruled out that regions exist 
where pollution is more severe than suggested based on 
the risk assessment performed here or by Machate et al. 
[19]. Generally, the current data suggest that organic 
pollutants introduced via atmospheric deposition are 
likely to cause widespread chronic toxic risks in moun-
tain lakes. However, the currently available monitoring 
data likely underestimate the toxic risks, also due to the 
fact that accurate chemical monitoring strategies are dif-
ficult to perform in such a remote and difficult to access 
habitat.

Local sources cause acute toxic risks
Local emission sources of organic chemicals in mountain 
areas have been widely neglected, as urban settlements 
and conventional agricultural practices are mostly absent 
at high altitudes. However, local anthropogenic activities 
like mining, charcoal production, tourism, and pastoral-
ism are practised in mountains since a long time (Fig. 2) 
[73, 74]. While mining mainly introduced inorganic pol-
lutants into the mountain environment [17], tourists can 
introduce contaminants like pharmaceuticals, personal 
care products and insect repellents [15], plastics [75], 
and PAHs (e.g., through car travel) [58, 76]. Although 
not investigated yet, it is to be expected that the input 

of chemicals by tourists is increased especially where 
there are mountain refuges and huts, as these frequently 
attract higher amounts of tourists and often only have a 
rudimentary wastewater treatment system. Additionally, 
also other local activities, like the practices of pastoralism 
(releasing of cattle into the mountains over the summer), 
laying fires to keep landscapes open, and the introduction 
of fish, are known to introduce pollutants into mountain 
lakes [16, 19, 77, 78].

Only few studies provide insights into the risk and 
impact by local pollution sources on mountain lakes. For 
the French Pyrenees, Machate et al. [19] report an acute 
toxic risk for and impact on crustacean communities in 
mountain lakes, due to the introduction of the highly 
toxic compounds diazinon and permethrin through local 
sources (livestock and tourism). Via the here performed 
risk assessment it was possible to identify another study, 
performed in different mountain lakes of the Sierra 
Nevada in California, where insecticides (malathion and 
diazinon) could be detected at concentrations that sug-
gest local sources and cause an acute toxic risk for the 
present crustacean communities (Fig.  1) [33]. Acute 
toxic risks from the input of insecticides by local sources 
are therefore not only a phenomenon of the Pyrenees, 
but likely also affects mountain lakes in other mountain 
ranges of the world. While more data are needed to fully 
comprehend the extent of this risk, this demonstrates 
that acute toxic risks for water bodies cannot only be 
found in populated lowland regions, but also in water-
bodies of remote mountain areas.

Evidence for toxic impacts by chemical pollution 
in mountain lakes
Various studies demonstrated that pollution-induced 
toxicity causes biological responses in aquatic mountain 
organisms and their populations. Their results showed: 
(1) a widespread estrogenic activity in sediments of 83 
European mountain lakes, ranging from Norway to the 
Pyrenees and Eastern Europe [79]; (2) a background fish 
feminization in a lake from the Tatras and the Pyrenees, 
identified by investigating the expression of oestrogen 
receptors and zona radiata genes in male fish [80]; (3) an 
expression of the Cytochrome P450 1A enzyme in fish 
of European mountain lakes, indicating a widespread 
impact by pollution on aquatic organisms of European 
mountains [81]; (4) altered zooplankton communities 
with reduced numbers of crustacea in mountain lakes of 
the French Pyrenees [19]; (5) in situ effects in frogs from 
the Sierra Nevada Mountains (California, USA), includ-
ing an increased mortality, slower developmental rates 
and lowered cholinesterase activities in more polluted 
mountain regions [82], and (6) multiple studies sug-
gesting that pesticide pollution drives frog population 
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Fig. 3  Development of sediment concentrations in ng/g d.w. of different persistent organic micropollutants in various mountain lakes of the 
world over time. Development of A ∑PAH concentrations, B ∑PCB concentrations and C ∑DDT concentrations. Vertical lines represent points of 
reference and show average concentrations of the 1970s and − 90 s in lakes of the U.S. in urban (dashed line), light urban (dotted line) and remote 
areas (solid line) (Additional file 1: Table S2)
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declines in the Sierra Nevada Mountains [83–87]. It is 
now known that the fungal pathogen Batrachochytrium 
dendrobatidis (Bd) caused the observed amphibian 
decline in the Sierra Nevada and many other parts of the 
world [88]. However, considering the number of studies 
suggesting a cause–effect relationship between pesticide 
pollution and declining frog populations at high altitudes, 
pollution and Bd-driven declines are likely linked. Chem-
ical pollution might have increased the Bd infection rate 
by weakening the immune system of frogs and reducing 
the abundance of aquatic predators that otherwise con-
sume Bd zoospores and, thereby, reduce infection pres-
sure on amphibians [89, 90]. This notion is supported by 
other studies, which confirm that an increased success 
of infectious diseases might be linked to pollution [91]. 
However, more studies on the cause–effect relationships 
between pathogen outbreaks and pollution are required 
to confirm this observation.

Therefore, similar to the results of the here performed 
TU-based risk assessment, also studies that looked at 
biological indicators support the idea of widespread toxic 
effects, and especially chronic toxic effects, on aquatic 
organisms in mountains. While also in this regard more 
studies will be required to allow for a reliable conclu-
sion, these results agree with findings made in the polar 
regions. Similar to the Arctic, also mountainous areas 
have been shown to act as focusing regions for POPs with 
reported concentrations being similar or even slightly 
higher than in the Arctic [21]. Considering that simi-
lar concentrations of POPs cause severe adverse effects 
on the wildlife at the top of the arctic food-chain (e.g., 
immune system suppression, endocrine disruption, and 
carcinogenicity as well as impacts on behaviour, repro-
duction, and development) [13, 14], we may assume that 
aquatic organisms in the mountain environment are sim-
ilarly impacted by pollution-induced adverse effects. A 
negative effect on the health of aquatic mountain organ-
isms due to chemical pollution is therefore very likely.

Habitat characteristics affect vulnerability 
towards and fate of chemical pollution
Mountain habitats exhibit unique characteristics. While 
currently little explored, these characteristics have the 
potential to cause aquatic ecosystems to be more vul-
nerable to pollution. The harsh living conditions include 
cold temperatures, thin air, low nutrient levels, high UV 
radiation, as well as long winters and short summers [6], 
which are known to strongly enhance the sensitivity of 
organisms to pollution by a factor of up to 100 [92–95]. 
Furthermore, increased UV radiation and clear mountain 
lake waters may enhance toxicity of compounds that are 
susceptible for photoactivation, such as PAHs [96, 97]. 
To endure the harsh living conditions in the mountain 

environment, organisms have developed certain traits 
such as increased longevity, higher lipid contents and 
slower growth rates [21]. While necessary to survive at 
high altitudes, these traits favour the bioaccumulation of 
organic chemicals in the organisms and increase inter-
nal concentrations [21, 55, 98–100]. This effect is prob-
ably magnified by the typically oligotrophic conditions 
in mountain lakes. Under such conditions, (planktonic) 
organisms represent the highest amount of total organic 
matter in the lake and nutrient cycling is highly efficient. 
This causes an increased and extended exposure of pre-
sent organisms while sedimentation is reduced [101, 
102]. In addition, mountain lake food webs are typically 
short and unbranched with highly specialized top preda-
tors [21]. In such food webs, biomagnification of POPs in 
top predators is particularly severe, resulting in a great 
ecotoxicological risk for those species [13]. Similar risks 
were reported for organisms that live close to or tempo-
rarily in mountain lakes (amphibians and birds of prey) 
[66, 103] and likely also apply for waterborne organisms 
[21, 43]. However, some studies also obtained results that 
deviated from this assumption [104, 105]. Something that 
is likely caused by differences in feeding habits and the 
zone of the lake organisms inhabit (pelagic vs benthic), 
which lead to a more complex exposure scenario of the 
present organisms and may make it difficult to demon-
strate the effect of biomagnification.

Furthermore, the very secluded and patchy landscape 
of mountains may cause a higher sensitivity of mountain 
organism populations to pollution events. For example, 
disconnected mountain lakes form insular ecosystems 
[54], where a re-colonization from intact populations of 
neighbouring water bodies is hampered. Thus, the recov-
ery of a mountain lake after a toxicity event is strongly 
hindered [106]. The ability to recover is likely further 
reduced by the slow growth rates that prevail at high alti-
tudes [21]. Consequently, recovery processes are likely 
to be slow or even incomplete in case a species has been 
lost. Considering that mountain lakes constitute rela-
tively simple systems with a low functional redundancy, 
the introduction of organic chemicals poses a great risk 
for their overall functioning and health [107].

The special habitat characteristics prevailing in moun-
tain landscapes might not only impact the vulnerability 
of their aquatic ecosystems, but also cause pollutants to 
accumulate in mountain lakes. Mountain watersheds are 
often characterized by a very limited soil development 
and generally extremely low organic carbon contents [6]. 
This reduces the ability of the catchment to effectively 
retain organic chemicals and support their mobilization 
and accumulation in downstream mountain lakes [10, 
20, 56]. Especially mountain lakes with longer water resi-
dence times or a closer ratio between lake size and the 
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size of their watershed, have a higher potential to accu-
mulate pollutants [66]. That potential may be further 
enhanced by the prevailing low temperature that reduces 
the volatilization of compounds into the atmosphere 
[50]. In addition, low temperatures also reduce the effi-
cacy of hydrolysis and biodegradation processes [108], 
likely increasing the build-up of chemical pollutants in 
mountain lakes. However, as the levels of UV radiation 
increase with increasing altitude and due to the fact 
that the water of mostly oligotrophic mountain lakes is 
very clean, which allows the water to be penetrated to a 
greater depth by the incoming radiation, this may lead 
to an increased efficacy of photodegradation processes 
[6, 109], which might partly counteract the tendency of 
chemical accumulation. Nevertheless, all in all the pre-
vailing environmental conditions render mountain lakes 
as a focusing point and effective sink for organic chemi-
cals in the mountain environment. Something that has 
also been observed by few studies [41, 54, 70].

Conclusion and research needs
Currently, the knowledge on the risk for mountain lakes 
by chemical pollution is limited. Neither their exposure 
nor their sensitivity is explored sufficiently. Similar to 
lowland waterbodies, mountain lakes are exposed to a 
complex mixture of organic chemicals via local activities 
and atmospheric deposition. This chemical cocktail can 
cause acute or chronic toxic risks for aquatic organisms 
with cascading effects potentially affecting the whole 
mountain environment, including, e.g., water quality. 
These risks may be enhanced by the specific habitat con-
ditions and the possibly greater vulnerability of mountain 
organisms to chemical pollution. Considering the impor-
tance of aquatic mountain lake ecosystems for the global 
supply with drinking water, more efforts are needed to 
monitor chemical pollution and its impact on mountain 
lake ecosystems on a regional, continental, and global 
scale. Only then will it be possible to close the existing 
knowledge gaps and preserve these ecosystems and their 
services for future generations.

The assessment of chemical risks for mountain lakes is 
hampered most by the lack of monitoring data and hence 
exposure information (Table  1). In a mountain context, 
only few lakes, regions and compounds have been inves-
tigated so far. Future chemical monitoring needs to go 
substantially beyond POPs well-known for atmospheric 
transport, since recent studies indicated that unexpected 
compounds from local sources may have the potential to 
drive toxic risks in mountain lakes [19]. State-of-the-art 
LC–HRMS and GC–HRMS target, suspect and non-
target-screening [110, 111], together with effect-based 
monitoring [112, 113], are needed to allow for a com-
prehensive monitoring of complex mixtures and help to 

better characterize chemical pollution and possible toxic 
risks and effects in mountain lakes. Thereby, low chemical 
concentrations, which demand for a sample enrichment, 
and logistic challenges of transport and preservation of 
large water volumes in remote areas, need to be over-
come by utilizing passive sampling techniques. These 
techniques allow for time-integrated sampling of a broad 
range of pollutants, including substances with effect con-
centrations in the nanogram per litre range [114–117].

The results obtained by these studies need to be used 
to better understand the spatial distribution of chemi-
cal pollution. To this end, it would be helpful to advance 
existing exposure models. The currently most progressive 
model is the MCMPOP model, which considers air, soil, 
precipitation (rain and snow), vegetation, and ice cover 
in order to understand the transport processes of POPs 
across the central Himalayas [118]. Future models should 
include information on short- to long-range atmospheric 
transport, thereby also considering the mountain-specific 
distribution of air masses and precipitation, together 
with local sources and the characteristics of lakes and 
catchment, asking for high-resolution remote sensing 
data. By developing such an advanced model, it would 
be possible to predict those lakes that are most exposed 
to and hence at the highest risk by chemical pollution.  
This is currently still difficult, which makes it difficult to 
plan meaningful exposure monitorings and fully under-
stand the existing toxic risk by chemical pollution. Fur-
thermore, having such models would help to develop 
a better understanding of how global climate and land 
use changes will alter the future exposure and toxic risk 
for mountain lakes by organic chemicals [119]. Knowl-
edge that is still lacking, but crucially needed in order to 
be able to effectively protect and maintain the health of 
mountain lakes. Another obstacle that needs to be over-
come in order to fully understand the risk for mountain 
lakes by chemical pollution is the uncertainty around the 
sensitivity of their organisms. Based on their character-
istics, organisms in mountain lakes are likely to be more 
vulnerable to chemical pollution. Standard toxicity tests 
are, however, done under laboratory conditions, which 
is likely leading to an underestimation of the prevailing 
toxic risk when using EC to assess the prevailing risk. 
Therefore, improved exposure modelling and monitor-
ing needs to be complemented by a better understand-
ing of the impact of chemical pollution on mountain lake 
ecosystems and their biodiversity under multiple stress 
conditions. Therefore, investigations on the ecotoxic-
ity of relevant pollutants, and mixtures thereof, under 
realistic stress conditions are urgently needed. Relevant 
stressors include traditional environmental stressors like 
high ultraviolet radiation, cold temperatures and food 
shortage [96, 120, 121], but also pathogens [122, 123] and 
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climate change scenarios [124], and should be supported 
by predictive models on multiple stresses [95]. Also pale-
olimnological studies could be useful, since they allow to 
understand the impact of chemical pollution over longer 
periods of time and help to reconstruct how mountain 
lake ecosystems looked like before the introduction of 
anthropogenic organic chemicals [125, 126].
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