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Abstract
Impact assessments can help prioritising limited resources for invasive species management. However, 
their usefulness to provide information for decision-making depends on their repeatability, i.e. the consist-
ency of the estimated impact. Previous studies have provided important insights into the consistency of 
final scores and rankings. However, due to the criteria to summarise protocol responses into one value (e.g. 
maximum score observed) or to categorise those final scores into prioritisation levels, the real consistency 
at the answer level remains poorly understood. Here, we fill this gap by quantifying and comparing the 
consistency in the scores of protocol questions with inter-rater reliability metrics. We provide an overview 
of impact assessment consistency and the factors altering it, by evaluating 1,742 impact assessments of 60 
terrestrial, freshwater and marine vertebrates, invertebrates and plants conducted with seven protocols ap-
plied in Europe (EICAT; EPPO; EPPO prioritisation; GABLIS; GB; GISS; and Harmonia+). Assessments 
include questions about diverse impact types: environment, biodiversity, native species interactions, hy-
bridisation, economic losses and human health. Overall, the great majority of assessments (67%) showed 
high consistency; only a small minority (13%) presented low consistency. Consistency of responses did 
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not depend on species identity or the amount of information on their impacts, but partly depended on the 
impact type evaluated and the protocol used, probably due to linguistic uncertainties (pseudo-R2 = 0.11 
and 0.10, respectively). Consistency of responses was highest for questions on ecosystem and human 
health impacts and lowest for questions regarding biological interactions amongst alien and native spe-
cies. Regarding protocols, consistency was highest with Harmonia+ and GISS and lowest with EPPO. The 
presence of few, but very low, consistent assessments indicates that there is room for improvement in the 
repeatability of assessments. As no single factor explained largely the variance in consistency, low values 
can rely on multiple factors. We thus endorse previous studies calling for diverse and complementary ac-
tions, such as improving protocols and guidelines or consensus assessment to increase impact assessment 
repeatability. Nevertheless, we conclude that impact assessments were generally highly consistent and, 
therefore, useful in helping to prioritise resources against the continued relentless rise of invasive species.
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Introduction

Invasive alien species are one of the greatest threats to biodiversity, economy and public 
health (Bellard et al. 2016; Mazza and Tricarico 2018; Diagne et al. 2020; Pyšek et 
al. 2020; Smith 2020). Concern about invasive species is growing due to the relent-
less increase in introductions and their spread, mostly associated with environmental 
change and increasing trade (Seebens et al. 2015, 2017; Chapman et al. 2017; Sardain 
et al. 2019). Although there are significant national and international efforts to reduce 
introductions, spreads and their impacts (Keller and Perrings 2011; Turbelin et al. 
2017), human operational capacity to avert new invasions is limited (Genovesi and 
Shine 2004; Keller et al. 2007; Early et al. 2016). Thus, reliable tools to prioritise and 
underpin invasive species research, management and policy are required (Roberts et al. 
2018; Booy et al. 2020). Under this urgent need, systematic semi-quantitative impact 
assessment protocols, based on available scientific evidence to rank and prioritise man-
agement of alien species are of paramount usefulness (e.g. Genovesi and Shine 2004; 
McGeoch et al. 2016; Vilà et al. 2019; Vilizzi et al. 2021).

The large number of protocols developed with similar objectives, as well as the 
substantial body of research comparing their outputs, shows the pivotal role of proto-
col choice in assessments (Glamuzina et al. 2017; Turbé et al. 2017; Vilà et al. 2019; 
Sohrabi et al. 2021). While this is important, there are also other crucial and more 
undervalued aspects in impact assessments. Previous studies have frequently illustrated 
the varying consistency of results when evaluating the same species with the same 
protocols (McGeoch et al. 2012; Almeida et al. 2013; Lawson et al. 2015; Turbé et al. 
2017; González-Moreno et al. 2019; Vilizzi et al. 2019; Clarke et al. 2021; but see Vol-
ery et al. 2021). This finding raises doubts as to whether the choice of the evaluator can 
affect management prioritisations and, thus, whether risk assessments are reliable for 
providing information for decision-making. The fluctuating consistency is partly to be 
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expected as assessments in the end rely on the judgement of experts (Regan et al. 2002; 
Burgman et al. 2011; McGeoch et al. 2012; Vanderhoeven et al. 2017) which depend 
on their experience, i.e. amount and bias of knowledge and their subjective interpreta-
tion of evidence (Kumschick et al. 2017; Dorrough et al. 2018; Bindewald et al. 2020; 
Clarke et al. 2021). Certainly, there have been advances to control this subjectiveness 
(e.g. refinement of guidelines and protocol questions, as well as peer review and con-
sensus process; Hawkins et al. 2015; Matthews et al. 2017; Vanderhoeven et al. 2017; 
Dorrough et al. 2018; Volery et al. 2020). However, information on the overall severity 
and extent of consistency in responses is still missing. For instance, information on the 
factors underlying different degrees of consistency is mostly theoretical (Regan et al. 
2002; Vanderhoeven et al. 2017; Latombe et al. 2019; Probert et al. 2020), while the 
limited empirical information focuses mainly on consistency in final scores and rank-
ings (e.g. Perdikaris et al. 2016; González-Moreno et al. 2019). However, the protocol’s 
criteria for synthesising scores (e.g. the mean or maximum value for choosing a final 
score) and the subjective threshold value for ranking species into different categories 
(Almeida et al. 2013; D’hondt et al. 2015; González-Moreno et al. 2019; Vilà et al. 
2019) add unintuitive noise to the real consistency in answers. To date, studies focused 
on protocol questions are limited to a single taxon and a single protocol (e.g. Clarke et 
al. 2021; Volery et al. 2021). Thus, empirical information on the factors influencing 
the consistency across assessors remains poorly understood.

To fill both knowledge gaps, we addressed two objectives. Objective 1: To pro-
vide generalisable results on consistency in individual protocol questions, we evalu-
ated consistency when assessing a wide range of taxa (invasive plants, vertebrates and 
invertebrates), as well as when using multiple protocols. We measured consistency in 
scores of protocol questions using inter-rater reliability metrics (Hallgren 2012; Gwet 
2014) benefiting from one of the most comprehensive datasets on impact assessment 
of invasive species in Europe (described in González-Moreno et al. 2019). By explor-
ing a wide range of taxa and protocols, our results will provide information for the 
overall reliability of impact assessments that support decision-making. Objective 2: 
To evaluate which factors may influence the consistency of responses, we evaluated 
the relationship between the consistency and the protocol choice, impact type (e.g. 
environmental, socio-economic), taxonomic group, species identity and the amount of 
scientific literature available about species impacts. The evaluation of these factors, ex-
cept for protocols, aims to answer if consistency varies due to epistemic uncertainties, 
such as if assessors had different knowledge about impacts or responded with greater 
subjectivity (e.g. due to bias, limited or inconsistent knowledge; McGeoch et al. 2012, 
2016; Kumschick et al. 2017). The evaluation of protocol choice aims to detect if con-
sistency is associated with protocol properties (e.g. number of questions per protocol 
and of responses per question) or with linguistic uncertainties (e.g. clarity or vagueness 
of the questions). For details on epistemic and linguistic uncertainties, see Regan et 
al. (2002), Leung et al. (2012), Latombe et al. (2019) and Probert et al. (2020). Alto-
gether, these results can form the basis of future studies to provide information for the 
design or update of impact assessment protocols for invasive species.
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Materials and methods

Assessors, species and impact assessment protocols

Within the Alien Challenge COST Action, 78 assessors with variable experience in 
biological invasions (PhD or PhD candidates; hereafter assessors) evaluated 60 inva-
sive species with seven different risk assessment protocols (hereafter protocols) to pro-
vide information about the agreement of scores in protocols (González-Moreno et al. 
2019). In total, we used 1,742 of those impact assessments.

Assessors were grouped according to their taxonomic expertise, under the coor-
dination of a taxonomic leader. Assessors selected by consensus a list of 60 invasive 
species that covered a wide range of habitat types and biological characteristics: 
terrestrial plants (n = 10), freshwater plants (5), terrestrial vertebrates (10), ter-
restrial insects (13), other terrestrial invertebrates (4), freshwater invertebrates (6), 
freshwater fish (3), marine invertebrates (6) and marine vertebrates (3). See details 
in Suppl. material 1: Table S1. In our analyses, we focused on the level of species 
and the three higher taxonomic groups: vertebrates (n = 29 species), invertebrates 
(16) and plants (15).

Each assessor scored a minimum of three and a maximum of nine species (me-
dian = 3) and each species was assessed by a minimum of three and a maximum of 
eight evaluators (median = 5). Not all assessors evaluated all species of their expertise 
group; thus, the study design was neither crossed nor nested, an important point in 
understanding how to measure consistency (see below).

The seven protocols used were developed or applied in Europe: European Plant 
Protection Organisation-Environmental Impact Assessment for plants (EPPO Brunel 
et al. 2010); EPPO-Prioritisation scheme (EPPO-Prioritisation; Kenis et al. 2012); 
German-Austrian Black List Information System (GABLIS; Essl et al. 2011); Great 
Britain Non-native Species Risk Assessment (GB-NNRA; Baker et al. 2008; Mum-
ford et al. 2010); Generic Impact Scoring System (GISS; Nentwig et al. 2010, 2016); 
Belgian risk screening tools for potentially invasive plants and animals (Harmonia+; 
D’hondt et al. 2015) and Environmental Impact Classification of Alien Taxa (called 
at that time GISS IUCN and now EICAT; Blackburn et al. 2014). The selection of 
protocols does not consider updates that have become available after 2015 (e.g. for EI-
CAT Volery et al. 2020). For details on protocols and the template used, see González-
Moreno et al. (2019).

Before filling the spreadsheets, the assessors read the protocol guidelines and asked 
questions directly to the protocol developers, if needed. To conduct the assessments, 
experts decided on their own sources of information (i.e. scientific literature, own ex-
pertise or alternative sources). The assessors considered Europe as the risk assessment 
area. We provided the scores provided by each assessor in each impact assessments, 
i.e. combination of protocol and species, in Suppl. material 2 as an R list object called 
“list_impact_assessments.RData”.
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Classification of impact types

Even if some protocols assessed all four components of the invasion process: intro-
duction, establishment, spread and impacts, we only evaluated the latter. To evaluate 
whether consistency in responses systematically varies across impact types, we grouped 
the questions into six categories: ecosystem processes, biodiversity, species interactions, 
hybridisation with native species, economic losses and human health (Table 1 and 
Suppl. material 1: Table S2). These impacts were further grouped into two coarse im-
pact types: environmental (i.e. biodiversity, species interaction, hybridisation, ecosys-
tems) and socio-economic (i.e. economic losses and human heath).

Quantifying consistency

We measured the consistency of responses across assessors with inter-rater reliability 
metrics, which quantify the proportion of the variance in the scores associated with 
assessors (Furr 2021). The values range from 0 to 1 intuitively indicating a low or high 
consistency in the responses, respectively. For instance, a value of 0.8 would indicate that 
20% of the variance observed is due to assessor choice (Hallgren 2012). See an overview 
on inter-rater reliability metrics provided by Hallgren (2012) and Gwet (2014).

Estimation of inter-rater reliability metrics is influenced by the structure of the 
data (i.e. which assessors evaluated which species; Putka et al. 2008; Koo and Li 2016). 
As our study design was neither crossed nor nested, we used the coefficient G (Putka 
et al. 2008). This coefficient G is based on generalisability theory (G-theory; Brennan 
2001; Putka et al. 2008), which is focused on disentangling the sources of error using 
analyses of variance methods (Brennan 2001). To calculate the coefficient G, we first 
require estimating the variance associated with raters (e.g. assessors) and ratees (e.g. 
protocol questions). We did it with a mixed model using the identities of the raters and 
ratees as random variables (Putka et al. 2008). To address our objectives, we calculated 

Table 1. Number of questions regarding different types of impacts of invasive species considered by the 
seven impact assessment protocols considered. Range of levels indicates the minimum and maximum 
number of available responses for each question of a given protocol. P-V-I = number of plant, vertebrate 
and invertebrate species evaluated with each protocol. See the questions and their classification in Suppl. 
material 1: Table S2. For details on protocols, see González-Moreno et al. (2019).

Protocol Ecosystem Biodiversity Species 
interaction

Hybridi-sation Economic 
losses

Human 
health

Range of levels P-V-I

EICAT 2 3 4 1 1 0 5-5 15-16-29
EPPO 4 2 1 1 0 0 3-3 15-0-0
EPPO-Prioritisation 1 1 1 0 2 1 3-3 15-0-0
GABLIS 1 2 2 1 1 1 3-4 15-16-29
GB-NNRA 3 2 2 2 1 1 5-5 15-16-29
GISS 1 2 3 1 5 1 6-6 15-16-29
Harmonia+ 1 4 6 2 5 3 3-6 15-16-29
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two types of coefficient G: one for the consistency of assessors scoring each question of 
a protocol for a given species, i.e. the overall consistency in an impact assessment (here-
after GProt-Spp) and a second coefficient G for the consistency of assessors scoring a given 
impact (i.e. protocol question) across all species of a given taxonomic group (hereafter 
GQuest-Taxon). We differentiated between taxonomic groups, because impact knowledge 
may vary across them. We used the coefficient GProt-Spp to provide information on the 
general consistency in a particular impact assessment (Objective 1), as well as to dis-
entangle the effect of species identity, taxonomic groups and amount of published 
scientific articles on species impacts in consistency (Objective 2). We used GQuest-Taxon to 
disentangle the effect of impact types (Objective 2). In addition, we used both GProt-Spp 
and GQuest-Taxon in complementary analyses to unravel whether the influence of proto-
cols relies on methodological aspects, such as the number of questions per protocol and 
of available answers per question or whether the variability could be potentially more 
associated with linguistic uncertainties (Objective 2). See Table 2 for details.

In the following sections, we explain the calculations of the coefficient GProt-Spp and 
GQuest-Taxon. We advance that some mixed models to estimate the variance associated 
with raters and ratees had convergence issues (e.g. identifiability and singularity) and 
failed to calculate some coefficients G. We also explain in different sections the meth-
odological approximations to disentangle the influence of each factor on consistency 
of scores.

Calculation of coefficient GProt-Spp

We calculated a GProt-Spp for each combination of protocol and species (i.e. an impact 
assessment). A way to visualise the data required is a two-dimension array, where the 
columns are the assessors evaluating a given species, the rows the impact questions 
of a given protocol and the values within the matrix the scores estimated. For each 
array, we performed a mixed model to extract the variance associated with the asses-
sors and the protocol questions (Putka et al. 2008; see Table 2 ). Second, following 
Putka et al. (2008), we used the estimated variances to calculate the coefficient G. 
See mathematical details of the coefficient G in Putka et al. 2008 and our R code 
(Suppl. material 2).

Table 2. Interpretation and use of GProt-Spp and GQuest-Taxon. Linear mixed models = formulation used to 
estimate the variances required for the calculation of the coefficients G. The formulation is the one used 
to run the models with the R function lmer of the R package lme4.

Metric Interpretation Linear mixed models Use
GProt-Spp Level of agreement in 

each impact assessment. 
(Protocol-Species combination).

Scores ~ (1|ID Question) + 
(1|ID assessor)

Objective 1: To quantify the general consistency of 
assessors in impact assessments. 

Objective 2: To evaluate if the consistency varies with 
the taxonomic group or species evaluated, the amount 
of published information on species impacts and the 

protocol choice or the number of questions per protocol.
GQuest-Taxon Level of agreement in each question 

of a given protocol. (Question-
Taxonomic group combination)

Scores ~ (1|ID Species) + 
(1|ID assessor)

Objective 2: To evaluate if the consistency varies with 
the impact types and the number of available responses 

per protocol question. 
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In calculating the GProt-Spp values of 330 combinations of species and protocols, 
we found convergence issues in the mixed models for 66 cases, reflecting in 65 cas-
es of singular models. These issues were not systematically related to species (Chi-
squared = 58.69, p-value = 0.52; Chi-squared test with Monte Carlo simulations), but 
were related to specific protocols (Chi-squared = 53.51, p-value < 0.001; specifically, 
to EPPO Priorisation and GABLIS protocols). We performed our subsequent analyses 
with the remaining 264 GProt-Spp values. However, to ensure that excluding values from 
models with singularity issues had no effects on our inferences, we also evaluated dif-
ferences in GProt-Spp between taxonomic groups and protocols without removing the 65 
values of the singular models (i.e. sensitivity analysis), which showed similar results.

Calculation of coefficient GQuest-Taxon

We calculated GQuest-Taxon to evaluate the association between different impact types and 
levels of consistency. As consistency in answering the diverse impact types can vary across 
taxonomic groups, we calculated a GQuest-Taxon for each combination of taxonomic group, 
protocol and question of each protocol. A way to visualise the data required is a two-di-
mension array, where the columns are the assessors evaluating a given impact question for 
any species of a given taxonomic group, the rows, the species of a given taxonomic group 
and the values within the matrix, the scores estimated. Thus, for the same impact question, 
we have one to three databases depending on whether the impact can be applied to some 
or all taxonomic groups (i.e. plants, invertebrates and vertebrates; Table 1). For each array, 
we performed a linear mixed model to extract the variance associated with the assessors and 
species identity. Later, we used those variances to calculate GQuest-Taxon (Putka et al. 2008).

In calculating the GQuest-Taxon values of the 188 combinations of taxonomic groups, 
protocols and questions, we found convergence issues in the mixed models for 22 cas-
es. These issues were not systematically associated with protocols (Chi-squared = 5.78, 
p-value = 0.45), neither impact types (six impact types: Chi-squared = 3.21, p-val-
ue = 0.65; two higher impact types: Chi-squared = 0.25, p-value = 0.70). As there 
was no systematic removal of protocols or impact types, unlike GProt-Spp, we did not 
perform sensitivity analyses including the values with warnings about singularity. We 
performed our subsequent analyses with the remaining 166 GProt-Quest values: 64 on 
plant impacts, 59 on invertebrate impacts and 43 on vertebrate impacts.

Generality and extent of consistency in impact assessments

To interpret GProt-Spp values, we classified them into three decision-meaningful catego-
ries: low, medium and high consistency in impact assessments. We followed Krip-
pendorff (1980), who considered that impact assessments should be discarded for 
decision-making if G values were lower than 0.67, impact assessments can tentatively 
be used for decision-making if G values were between 0.67 and 0.80 and impact assess-
ments can definitively be used for decision-making if G values were above 0.80 (low, 
medium and high, respectively). To provide information on the general consistency in 
impact assessments, we discussed the relative frequency of these three categories.
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Species

Testing for differences in the consistency of scores between species is challenging due to 
the relative low amount of protocols and, thus, of GProt-Spp values per species. The number 
of available protocols for each vertebrate and invertebrate species is five and seven for plant 
species (Table 1). Moreover, for some species, the number of GProt-Spp values was lower due 
to convergence issues (see Table S3 for GProt-Spp values estimated). Therefore, we conducted 
two complementary approximations to test expectations of the influence of species from 
different perspectives. We called these analyses: permutation test and descriptive analysis. 
The permutation test is a statistical analyses focused on the proportion of low consistent 
assessments, while the descriptive analyses is focused on the distribution of raw values.

In the permutation test, we statistically tested if low consistent assessments were as-
sociated with few specific species. If true, the number of observed species with a large 
proportion of low consistent assessments (GProt-Spp < 0.67) should be lower than those 
expected by chance. We focused on the proportion of low consistent assessments, instead 
of using the correlation with all GProt-Spp values, since that is the subset challenging the 
reliability and usefulness of impact assessments. To test it, we performed 1,000 permuta-
tions swapping the GProt-Spp between species and protocols at random but maintaining 
the number of GProt-Spp values per species and protocol. We later compared, between the 
observed data and permuted data, the frequency of species with a proportion above 50% 
of low consistent assessments (GProt-Spp < 0.67). We looked for statistical differences using 
the unconditional Boschloo’s test with the function exact.test of the R package Exact (Cal-
houn 2021). We performed inferences, based on the distribution of the 1,000 p-values. 
To ensure that our results did not depend on thresholds when calculating the frequency 
of species with low consistent assessments, we also used the thresholds 30 and 40% to cal-
culate the proportions of low consistent assessments. When sample size is reduced, small 
variations in the frequency of events have important effects on proportions. We, there-
fore, conducted the permutation tests with those species with four or more assessments.

In the descriptive analysis, we visually assessed the mean and standard deviations of 
GProt-Spp across species. If consistency depends on species identity, we expect to observe 
species with different means and non-overlapping standard deviations. Complementarily, 
large standard deviations (> 0.20), reflecting that the consistency in impact assessments for 
a same species are in different categories (low, medium and high), support the influence of 
factors associated with the protocols (e.g. linguistic differences or impact types asked). See 
Suppl. material 1: Table S4 for a summary of the goals and expectations of all analysis (Per-
mutation test = Target 1; Descriptive analyses = Target 2 in Suppl. material 1: Table S4).

Amount of information available on species impacts

We examined the relationship between the proportions of assessments with low con-
sistency per species (GProt-Spp < 0.67) with the number of scientific articles on impacts 
per species recorded in the Web of Science (hereafter correlation test). We expected 
that the number of articles per species reflects the amount and diversity of knowledge 
on species impacts and should, therefore, correlate negatively with the proportion of 
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assessments with low consistency (Target 3 in Suppl. material 1: Table S4). We used 
a generalised linear model using the Poisson family with the R package (Bates et al. 
2015; Wickham et al. 2019; R Core Team 2021). To search the scientific articles, 
we used the advanced search of ISI Web of Science (11 July 2020). We used a query 
with three complementary sections. Two sections were fixed and indicated terms for 
searching (TS) papers about invasive species and their impacts, while the other section 
indicated synonyms of a species. See the following example: TS = (“Cameraria oridella” 
OR “Cameraria ohridella”) AND TS = (“Alien” OR “Invasive” OR “Non-native” OR 
“Non native” OR “Invasion”) AND TS = (“Impact” OR “Damage” OR “Harm”). See 
Suppl. material 1: Table S5 for details on the searches of each species.

Taxonomic groups and protocols

To statistically test whether consistency in assessments varied across taxonomic groups 
and protocols, we modelled GProt-Spp with beta regression models using the R package glm-
mTMB (Brooks et al. 2017; Targets 4 and 5 in Suppl. material 1: Table S4). We modelled 
both the mean and the precision in the models. While the mean refers to the effect we are 
interested in, the precision considers a variable dispersion along the explanatory variables 
(see details in Cribari-Neto and Zeileis 2009; Ferrari et al. 2011; Zhao et al. 2014). When 
modelling, we also considered that GProt-Spp may be influenced by other factors beyond our 
interest, such as the number of assessors considered in the calculation of the inter-rater 
metric (Hallgren 2012). Although we did not include the number of protocol questions 
due to convergence issues, we performed additional analyses to explore the relationship 
between the variables protocol and number of questions per protocol (see below; Target 
6 in Suppl. material 1: Table S4). To model the mean, we used models representing all 
combinations of three explanatory variables: the taxonomic group to which the species 
belongs, the protocol used in the impact assessment and the number of assessors who 
evaluated each species with each protocol. To model the precision, we included all com-
binations of two variables: the taxonomic group and protocol identity. Additionally, we 
controlled the non-independency of data by including in all models the species identity as 
a random intercept. In total, we performed 28 models. See all models in Suppl. material 
1: Table S6. For our inferences, we considered the models with ΔAICc ≤ 4 (models with 
an AICc equal or lower than the minimum observed AICc plus 4). See Targets 4 and 5 in 
Suppl. material 1: Table S4 for a summary of the main and sensitivity analyses.

We interpreted that statistical differences between taxonomic groups reflect diverse 
epistemic uncertainties across taxa. In contrast, statistical differences between protocols 
may reflect linguistic uncertainties, but also three other factors: the number of ques-
tions per protocol, the number of responses per question or the impact types evaluated 
in each protocol. To discuss the origin of protocol variability, we jointly interpreted the 
results of these beta regression models with three complementary analyses: one focused 
on GProt-Spp (number of questions in a protocol) and two focused on GQuest-Taxon (the 
number of responses in the questions and the impact type evaluated; see following sec-
tions; Targets 6, 8 and 9 in Suppl. material 1: Table S4). We considered that differences 
in consistency when using different protocols that are not explained by the number of 
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questions, number of responses per question or the impact types, might support the 
influence of linguistic uncertainties. In the complementary analyses to quantify the 
influence of the number of questions per protocol, we repeated the previous 28 beta re-
gression models (Suppl. material 1: Table S6), but exchanging the variable protocol for 
the variable number of impact questions per protocol. We later compared the marginal 
pseudo-R2 associated with the variable protocol and number of questions per protocol 
(Target 6 in Suppl. material 1: Table S4).

Impact types

To evaluate the influence of impact type, we used GQuest-Taxon, i.e. the metric provid-
ing information on the consistency when scoring a given protocol question across the 
species of a particular taxonomic group (Table 2). For each combination of protocol 
question and taxonomic taxon, we have its GQuest-Taxon value and its association with a 
detailed or coarse impact (see above; Suppl. material 1: Table S2). As some questions 
fell into several categories of impact types, we controlled this pseudo-replication in 
subsequent analyses (see below). In total, we analysed 76 GQuest-Taxon values for plants, 
71 GQuest-Taxon values for invertebrates and 51 GProt-Quest values for vertebrates.

We modelled GQuest-Taxon in relation to impact types and taxonomic groups to consider 
differences in the knowledge of impact types across taxonomic groups. In the analyses, we 
controlled four co-variables that can also affect GQuest-Taxon values: the number of species 
used to calculate GQuest-Taxon, the number of assessors used to calculate GQuest-Taxon, the pro-
tocol to which each question belongs and the specificity of the question (if it asked about 
one or more types of impact; binomial). In total, we used six variables to study variability 
in GQuest-Taxon. The number of combinations of our four categorical variables were relatively 
large for our amount of data (166 GQuest-Taxon values for 252 combinations of levels; impact 
type = 6 levels; taxonomic group = 3; protocols = 7 and specificity = 2). To reduce over-
parametrisation, we conducted two nested models. First, we modelled the variance associ-
ated with the four co-variables (two categorical and two continuous variables; hereafter, 
first nested model). Later, we modelled its residuals with the impact type and taxonomic 
group (hereafter, second nested model). We avoided overparametrisation, but assigned to 
the co-variables any potential variance shared with our variables of interest. Therefore, the 
detected effect of the taxonomic group and impact types may be conservative.

These first nested models were beta regressions since GQuest-Taxon values ranges from 
0 to 1. We modelled GQuest-Taxon with all combinations of the four co-variables, in the 
mean and precision parameter. We chose the best model, based on the corrected Akai-
ke’s Information Criterion approach (AICc; Target 10 in Suppl. material 1: Table S4). 
We then extracted its residuals and modelled them with the taxonomic group and im-
pact types by using a linear mixed model. We explored five models: a) interactive effects 
of the impact types and taxonomic groups; b) additive effects of the impact types and 
taxonomic groups; c) single effect of impact types; d) single effect of taxonomic groups; 
and e) null model with just the intercept (Target 11 in Suppl. material 1: Table S4). 
Since the same question can be answered for multiple taxonomic groups (Table 1), 
we also included the identity of the question as a random effect. For our inferences, 
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we considered the models within the ΔAICc ≤ 4. We obtained the proportion of the 
variance in GQuest-Taxon explained by the explanatory variables by applying the function 
summary of the R package base to the output of the models (R Core Team 2021). See 
Suppl. material 1: Table S7 for details on models.

To account for pseudo-replication due to the classification of some questions into mul-
tiple impact types (Suppl. material 1: Table S2), we repeated the previous steps 1,000 times 
by choosing in each one a single impact type per question at random. We called these tests 
randomisation tests. Note the difference with the permutation tests where we swapped GProt-

Spp (see sensitivity analyses in Targets 10 and 11 in Suppl. material 1: Table S4). To consider 
the uncertainty in the results, we calculated the proportion of times each of the five models 
from the second nested model were selected: (i) interactive effect; (ii) additive effect; (iii) 
single effect of impact type; (iv) single effect of taxonomic group; or (v) just the intercept 
(Suppl. material 1: Table S7). Later, we calculated the averaged estimated marginal means 
of the models included in each of the five sets. We conducted these analyses twice, once 
considering the detailed impact types and another considering the coarse impact types.

Complementarily, we considered that evaluating questions that are not common 
across the three taxonomic groups limits our ability to quantify the influence of the 
impact type and taxonomic group. Thus, we also repeated all the previous steps, but 
using only the common questions across the taxonomic groups (see sensitivity analyses 
in Targets 10 and 11 in Suppl. material 1: Table S4).

We ran the beta regression models with the R package glmmTMB to include ran-
dom effects (Brooks et al. 2017). We extracted the residuals with the R package stats 
(R Core Team 2021). We performed the linear mixed models with the R package lme4 
(Bates et al. 2015). We evaluated the performance of models by evaluating their residu-
als with the function simulateResiduals of the R package DHARMa (Hartig 2020; see 
its vignette for details). We evaluated the differences between the different variables by 
studying the estimated marginal means. We calculated the estimated marginal means 
of its factor levels in all iterations by using the functions emmeans and immeans of the 
R package emmeans, depending on whether the model has single effects or interactive 
effects. We performed the Tukey post-hoc test with the function pairs of the R package 
emmeans (Lenth 2021). We quantified the proportion of the variance explained by the 
model as the pseudo-R provided by Johnson (2014).

Factors associated with protocols

We also used GQuest-Taxon to complement the main analyses on the protocol variable 
(Target 5 in Suppl. material 1: Table S4). We explored whether the potential signal 
in the variable protocol can reflect the different impact types evaluated or number 
of responses in the questions in each protocol (Targets 8 and 9 in Suppl. material 1: 
Table S4). We calculated the variance partitioning of two sets of beta regressions mod-
elling GQuest-Taxon. In one set of beta regressions, we modelled the mean and the disper-
sion with the variables protocol and number of responses. In the second set of beta 
regressions, we modelled the mean and the dispersion with the variables protocol and 
impact types. In both models, we calculated the pseudo-R2 of the saturated model and 
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compared it with the pseudo-R2 of the models containing only one of the variables. We 
considered that no shared variance supports the influence of linguistic uncertainties in 
explaining the consistency in responses between protocols.

Results

Species

The mean GProt-Spp was high for 40 out of 60 species (GProt-Spp ≥ 0.8; 19 invertebrates, 12 
plants and nine vertebrates), medium for 13 species (GProt-Spp ≥ 0.67 and < 0.8); seven in-
vertebrates, five vertebrates and one plant) and low for seven species (GProt-Spp < 0.67; three 
invertebrates, two plants and two vertebrates; Fig. 1). Only in five assessments, assessors 
scored impacts with a very low consistency (GProt-Spp < 0.3; Hydrocotyle verticillata and Perc-
non gibbesi, both evaluated with GABLIS; Craspedacusta sowerbii and Phasianus colchicus 
with GB; and Solanum elaeagnifolium with EPPO). See all GProt-Spp values in Suppl. mate-
rial: Table S3. In some cases, GProt-Spp varied largely (standard deviations > 0.2). Species 
with low mean GProt-Spp values tended to have larger standard deviations (Spearman corre-
lation between the mean and the standard deviation = -0.82; Fig. 1). However, in general, 
the standard deviations of the different species overlapped. See Target 2 in Table 3.

The permutation tests showed that the concentration of low consistent assessments 
(GProt-Spp < 0.67) could be observed by chance, indicating that assessments with low con-
sistency were not associated with few specific species (Target 1 in Table 3). The p-value 
of unconditional Boschloo’s test was below 0.05 in 0 cases of the 1,000 randomisations, 
independently of the threshold used to calculate the proportions (30%, 40% and 50%).

Amount of information available on species impacts

The correlation test showed a negative relationship between the proportion of low 
consistent assessments and the number of published articles on species impact (Esti-
mate = -1.85; Z-value = -14.49; p-value < 0.001). However, the variance explained was 
low (pseudo-R2 ≈ 0.05).

Taxonomic groups and protocols

From the 28 beta regression models used to evaluate the influence of the taxonomic 
group or the protocols, we identified three best models (Suppl. material 1: Table S8). 
We focused our results on the model with the variables protocol and taxonomic group 
because it is the simpler and included our two variables of interest. Nevertheless, the 
results of the common variable protocol were similar to those of the best models (Sup-
pl. material 1: Tables S9 and S10).

The analyses of the residuals showed no significant deviations from uniformity and 
homogeneity assumptions for the variable taxonomic group (Kolmogorov-Smirnov test: 
D = 0.10, p-value = 0.30; uniformity test of each level had a p-value > 0.08; Levene’s 
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test for homogeneity of variance: F value = 0.14, p-value = 0.87) or the variable protocol 
(Kolmogorov-Smirnov test: D = 0.14, p-value = 0.30; uniformity test of each level had a 
p-value > 0.20; Levene’s test for homogeneity of variance: F value = 0.85, p-value = 0.54). 
The variable protocol explained greater variance in GProt-Spp than the taxonomic group 
(marginal pseudo-R2 ≈ 0.10 and ≈ 0.03, respectively). See Targets 4 and 5 in Table 3.

Assessors tended to score plant impacts with high consistency, while invertebrate 
and vertebrate impacts were moderately consistent, although confidence intervals over-
lap with G = 0.80 (Fig. 2A). There were statistical differences between plants and ver-
tebrates (Estimate = -0.551, SE = 0.174, p-value = 0.005) and plants and invertebrates 
(Estimate = -0.422, SE = 0.155, p-value = 0.019), but not between vertebrates and 
invertebrates (Estimate = -0.129, SE = 0.164, p-value = 0.711). For the protocols, as-
sessors tended to score impacts highly and consistently when using Harmonia+, GISS 
and EICAT protocols, moderately with GB, moderately-low with GABLIS and low 
consistently with EPPO. Consistency when using EPPO prioritisation, a protocol that 
only considered three questions on impacts and with many singularities issues when 
estimating GProt-Spp, was highly variable (Fig. 2B; see statistical differences between pairs 
of protocols in Suppl. material 1: Table S9; Tukey post-hoc test).

The sensitivity analysis, i.e. a repetition of the beta regressions, but also including the 
GProt-Spp values from the mixed models with a warning about singularity, showed greater 
differences between the levels of the variables protocol and taxonomic group (Suppl. ma-
terial 3: Fig. S1). However, uniformity and homoscedasticity assumptions were violated.

On the other hand, our complementary analysis to evaluate whether the variable 
protocol reflected variations in the number of questions per protocol (Target 6 in 
Suppl. Material 1: Table S4), showed that a model including the variable number of 

Figure 1. Mean ± standard deviations of the degree of assessor consistency when scoring the impacts 
of the same species across different protocols (GProt-Spp). The colours represent different taxonomic groups 
(green = plants, brown = invertebrates, purple = vertebrates). The number of protocols used to assess each 
species is indicated between brackets. See complete names of species in Suppl. material 1: Table S3.
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questions was worse (AICcquestions -387.21 Vs AICcProtocol -416.53). In addition, the mar-
ginal pseudo-R2 of the model including the number of questions was approximately 
half of the model including the protocol.

Impact types

Our analyses found no statistical differences in GQuest-Taxon between questions on the 
coarser impacts (i.e. environmental vs. socio-economic). However, when focusing 

Table 3. Summary of the main results. Target = Factor evaluated. See details on hypotheses and expecta-
tions in Suppl. material 1: Table S4.

Target Analyses Result Interpretation
1) Species Permutation test The frequency of species with large proportions of low-

consistent assessments can be obtained by chance.
There is no evidence that low-consistent 
assessments are associated with particu-

lar species and, thus, no evidence of 
clear epistemic uncertainty on species.

2) Species Descriptive 
analyses

Visually, the standard deviations overlap across species. There are no differences in the consist-
ency of responses when assessing 

different species. 
3) Species Correlation test Negative correlation between the number of published 

articles and the proportion of low-consistent assessments. 
The pseudo-R2 was low (pseudo-R2 ≈ 0.05).

The number of published articles is of 
little relevance for explaining differences 

observed.
4) Taxon 
group

Beta regression Consistency evaluating plants tended to be larger than when 
evaluating vertebrates and invertebrates. However, variance 

explained is small (pseudo-R2 ≈ 0.03).

Factors associated with taxonomic 
groups (e.g. epistemic uncertainties) are 
not relevant to explain the consistency 

in assessments. 
5) Protocol Beta regression Consistency in assessments varied when using different 

protocols. The protocol explained a low, but relevant 10% 
of the variance.

Factors associated with protocols are 
partly relevant to explain the consistency 

in assessments.
6) Protocol 
(number of 
questions per 
protocol)

Beta regression The number of protocol questions explains half as much 
variance as the protocol variable.

Factors associated with protocols are im-
portant to some extent. However, some 
relevance of the protocols is unrelated 

to the number of questions per protocol 
(e.g. linguistic uncertainties; see comple-

mentary analyses in Targets 8 and 9).
7) Protocol Descriptive 

analyses
Some species showed large standard deviations Factors associated with protocols are 

important for the impact assessments of 
some species.

8) Protocol 
(number of 
responses per 
question)

Beta regression Small variance shared between the number of response ques-
tions and the protocol.

The signal observed in protocol (target 
5) is not due to number of responses 
per question and could be caused by 

linguistic uncertainties.
9) Protocol 
(Impact 
type)

Beta regression Small variance shared between the impact types and the 
protocol.

The signal observed in protocol (target 
5) is not due to the impact types asked 

in each protocol and could be caused by 
linguistic uncertainties.

10) Impact 
types

Beta regression 
(Nested 1)

Not interesting result. Analysis to avoid overparameterisa-
tion. See results on nested linear models 2 (Target 11). 

11) Impact 
types

Linear model 
(Nested 2)

As for the coarse impacts, the 1,000 iterations selected as the 
best model is the one including just the intercept.

Impact type partly explains the variance 
in consistency. However, the disappear-
ance of the signal when using the com-
mon questions to the three taxonomic 

groups, suggests the importance of 
questions specific for each taxon.

As for the detailed impacts, only 12.7% of the models 
showed a statistical signal on impact types. In those cases, 

impact type explained ≈ 10% of the variance.
Sensitivity analyses

When using only the common questions for the three taxo-
nomic groups, there is no signal on impact types.
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on the detailed impacts, there were no statistical differences in 87.3% of the 1,000 
randomisations, i.e. the best model included just the intercept, but there were some 
differences in the remaining 12.7%. In this reduced subset of models, the consen-
sus of average estimated marginal means showed that assessors most consistently 
scored questions about impacts on ecosystems and human health and least con-
sistently scored questions about hybridisation and biological interaction amongst 
species (Fig. 3; see consensus Tukey posthoc-test in Suppl. material 1: Table S11). 
The single effect of the impact types explained on average 11.4% of the variance 
in GProt-Quest. In our sensitivity analyses using only the common questions amongst 
the three taxonomic groups, there were neither statistical differences between taxo-
nomic groups nor impact types at the coarse and detailed levels. See Targets 10 and 
11 in Table 3.

Our complementary analyses to unravel if the signal about the protocol reflect-
ed differences in the number of responses per question or the impact types asked in 
each protocol, showed that the variable protocol shared an irrelevant variance with the 
variables number of responses per protocol question or the impact types asked (see 
variance partitioning in Suppl. material 1: Table S12; see Targets 8 and 9 in Table 3).

For similarity with results on GProt-Spp, we indicated which questions had the high-
est and lowest consistency (GQuest-taxon). The questions with the highest consistency 
(GQuest-taxon > 0.80) belonged to protocols Harmonia+ (20 combinations of questions 
and taxonomic group), GB (20), GISS (20), EICAT (10), GABLIS (4) and EPPO (1); 
while those with the lowest consistency (GQuest-taxon < 0.30) belonged to protocols Har-
monia+ (8), EICAT (2) and GABLIS (2). See the complete list of GProt-Spp and GQuest-taxon 
values in Suppl. material 1: Tables S3 and S13.

Figure 2. Estimated inter-rater reliability (GProt-Spp values) when scoring species belonging to different 
taxonomic groups (A) or using different protocols (B). Values averaged over the levels of the variable 
taxonomic group and protocol, A and B, respectively, included in the beta regression model (i.e. aver-
age estimated marginal means). The dot depicts the mean and the brackets the confidence level at 95%. 
X-axis values apply the R function emmeans with type ‘response’. The vertical dotted lines represent the 
thresholds used to categorise the coefficients G as low, medium and high consistent.
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Discussion

We provide the first empirical overview of the consistency amongst assessors in scoring 
particular questions of invasive species impacts in risk assessment. The broad cover-
age of this study (60 species from three major taxonomic groups and seven protocols) 
makes our results highly generalisable, while the focus on particular questions, beyond 
final scores and rankings, provided accurate estimates of the importance of the assessor 
in risk assessment, as well as evidence on the importance of the drivers, such as the im-
pact types evaluated. In summary, this study provides new and essential information on 
one of the many sides of the complex prism that is repeatability in impact assessments.

Our most important finding is that assessor consistency was generally high, with up 
to 67% of the species studied showing high consistency. Thus, it is reasonable to con-
clude that impact assessments are largely reproducible and reliable. Our results both sup-
port and contrast with those of the limited number of existing studies on the consistency 
of assessments protocols at the answer level (Volery et al. 2021 and Clarke et al. 2021, 
respectively). However, comparisons are difficult because of the focus of previous studies 
on a single protocol (EICAT) and taxonomic group (Volery et al. 2021 = alien ungu-
lates; Clarke et al. 2021 = insects), as well as because of the differences in the number of 
assessors involved or in the guidelines used (Volery et al. 2021 = similar number; Clarke 
et al. 2021 = two assessors). Another important point is that the methods for calculat-
ing consistency vary and the criteria for considering responses as high or low consistent 
were not explicit as here. Therefore, to move forward with confidence in this field of 
knowledge, we call for an intuitive and general criterion for measuring the consistency 

Figure 3. Assessor consistency when scoring different impact types. Results from the 12.7% of the 1,000 
randomisations, i.e. models including only the single effect of the detailed impact types as explanatory 
variable, when using the dataset including all protocol questions on impact (GQuest-Taxon). The unit of the 
x-axis is residuals; note that these estimates are from a model using the residuals of a previous model as 
dependent variable. The dot depicts the mean and the brackets the confidence level at 95%. See consensus 
Tukey adhoc-test in Suppl. material 1: Table S11.
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of impact assessments, such as the inter-rater reliability metric, as well as to set standards 
for the values at which consistency is considered high enough to underpin management.

No species had all its assessments with low consistency and the number of spe-
cies with a large proportion of low-consistent assessments could have been caused 
by chance (Targets 1 and 2 in Table 3). This lack of support for the importance of 
epistemic uncertainties may contrast a priori with the observed negative correlation 
between the number of published articles on species impacts and the proportion of 
low-consistent assessments in those species or by the different consistency of assessors 
scoring impacts of the diverse taxonomic groups (Targets 3 and 4 in Table 3). However, 
the variance explained by both was very low. Thus, although the invasive species ana-
lysed here are not a random subset of all alien species, but arbitrarily selected, epistemic 
factors associated with particular species and taxonomic groups may be less relevant 
than expected (Leung et al. 2012; McGeoch et al. 2012).

As for impact types, a small fraction of our nested randomised models (12.7%) 
suggested that assessors scored questions on ecosystem and human health impacts more 
consistently than questions on hybridisation and biological interactions with native spe-
cies (Target 11 in Table 3). These results may be surprising as previous studies have shown 
how scientific evidence for plant impacts on species is greater and more consistent than 
for ecosystems (Vilà et al. 2011). Our results also support the fact that, although infor-
mation on economic impacts is sometimes relatively detailed or more readily available 
than on ecological ones (e.g. Pimentel et al. 2005; Vilà et al. 2010; Roberts et al. 2018; 
Diagne et al. 2020), the consistency when answering impacts may not be one of the 
highest due to the also frequent knowledge gaps (McLaughlan et al. 2014; Renault et al. 
2021) and context dependency (Haubrock et al. 2021). Human health impact questions 
showed the highest consistency, which might be related to the well-known health impact 
of certain species (e.g. hay fever and disease transmission; Mazza and Tricarico 2018). 
However, these inferences must be taken with care as most of the nested randomised 
models (87.3%) did not show statistical differences amongst impact types (i.e. the best 
second nested model included just the intercept). Moreover, the complete disappearance 
of the signal in the impact types when considering only the common questions across 
the three taxonomic groups (sensitivity analyses) can also support that variability in con-
sistency can depend on impacts associated with particular taxa. Therefore, these results 
can highlight the need for quantitative species-specific evidence (Hulme et al. 2013) and 
for evaluating the degree of confidence on taxon-specific tools (Glamuzina et al. 2017).

As for protocols, our results support previous studies observing high consistency in 
assessments using the Harmonia+, GISS and EICAT protocols (Essl et al. 2011; Kenis 
et al. 2012; Turbé et al. 2017; Volery et al. 2021), while EPPO and GABLIS protocols 
showed less consistency (Target 5 in Table 3). Our complementary analyses to discern 
the source of the variability associated with the protocols showed that a relative impor-
tant part of the variance associated with protocols was not explained by the number 
of questions per protocol, the number of responses per question or the impact types 
asked in each protocol (Targets 6, 8 and 9 in Table 3). Potentially, the ability of some 
protocols to consider knowledge gaps in their responses can partly explain differences in 
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consistency when using alternative protocols (a hypothesis that we did not explore sta-
tistically). However, if that is the case, the protocols GABLIS and GISS should have the 
highest consistency, as they are the only ones considering the response “unknown im-
pact”. While this is true for GISS, we, however, observed the contrary result for GAB-
LIS. Thus, our results open the door to the possibility that some variability associated 
with protocols may be due to linguistic factors, such as the form of the question and 
language clarity (Turbé et al. 2017; White et al. 2019; Clarke et al. 2021). Although our 
analyses provide some insights into the role of linguistic uncertainties for consistency, 
their unravelling would require multidisciplinary collaboration (between ecologists and 
sociologists). In the meantime, our results call into question whether uncertainty in the 
alien species lists is almost exclusively epistemic (McGeoch et al. 2012) and support the 
view that there is still room for improvement of protocols and guidelines (Hawkins et 
al. 2015; Kumschick et al. 2017; Sandvik et al. 2019; Volery et al. 2020).

Despite the commented differences when scoring different impact types or when us-
ing diverse protocols, we note that most impact assessments were highly consistent and 
that no single factor explained variance to a large extent, important points to prioritise ef-
forts against invasive species. The lack of a clear major factor may suggest that the variabil-
ity in consistency may be due to different causes and that increasing consistency requires 
multiple and complementary approaches. To explore this possibility, we conducted ad-
ditional visual and non-statistical inspections of the nature of the disagreements amongst 
assessors of the raw data. We observed that the reason of inconsistencies in GProt-Spp were 
diverse, such as the awareness of impacts (e.g. unknown vs. known impacts; GABLIS 
protocol) or the severity (e.g. low vs. medium in EPPO and GB protocols). Similarly, 
we observed that low consistencies in GQuest-taxon were due to assessors disagreeing on the 
impact severity (e.g. EICAT), the strength of evidence (e.g. “yes” vs. “evidence-based as-
sumption”; GABLIS), or applying the guidelines wrongly (e.g. inapplicable vs. low; Har-
monia+). These observations, not shown here, support that the lack of consistency can 
be due to multiple factors already commented upon in literature (McGeoch et al. 2012; 
Turbé et al. 2017; White et al. 2019; Probert et al. 2020; Clarke et al. 2021).

Although addressing this question adequately requires analyses beyond the goal of our 
study, the consistency in scores may be increased by following recommendations from lit-
erature. At the assessors group level, it may be promoted by the organisation of iteration-
consensus meetings amongst assessors within taxa and across taxa (e.g. horizon scanning; 
Roy et al. 2014; Gallardo et al. 2016), the use of the same information (Volery et al. 
2020), the use of working groups and of peer review panels with clear feedback between 
assessors and reviewers (Burgman et al. 2011; D’hondt et al. 2015; Vanderhoeven et al. 
2017; Volery et al. 2021). At the assessor level, information gathered from scientific lit-
erature can be requested to support scores (Vanderhoeven et al. 2017; Vilà et al. 2019) or 
promote the training of assessors (González-Moreno et al. 2019), an aspect not considered 
in our dataset, but currently done in some assessments (e.g. EICAT). At the protocol level, 
it would be desirable to provide clear explanations and guidelines on the information 
requested for scoring impacts (D’hondt et al. 2015; Turbé et al. 2017; Vilà et al. 2019; 
Volery et al. 2020), to foment closed-ended questions and improve their wording to avoid 
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ambiguity (Turbé et al. 2017; Vilà et al. 2019) and, at the level of the information used, 
to foment studies without the presence of confounding factors and with details on data 
quality and type of the impact observation (see more details in Volery et al. 2020).

In summary, there is still room for improvement in impact assessments and may 
require multiple and complementary approaches, such as those described above. How-
ever, impact assessments are highly consistent and, therefore, reliable to underpin de-
cision-making. This is a positive and hopeful message, since in view of the expected 
increase in non-native species introductions (Seebens et al. 2021), we will have to 
prioritise management and tools, such as impact assessments, will play a key role.
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