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A B S T R A C T

Detailed knowledge of vegetation patterns allows to evaluate mire ecosystems and their dynamics. The use of 
hyperspectral information has the benefits of exploring spectral characteristics of species and vegetation 
modelling. Our study employed multi-scale and multi-source hyperspectral imaging with a handheld camera in 
the field and an UAV (Unoccupied Aerial Vehicle) sensor covering the wavelengths of 400 – 1000 nm. Plot-level 
spectra acquired with a UAV and field spectra collected at 1 m height were combined to develop a spectral library 
for Sphagnum moss species. This library was then used to map dominant Sphagnum species in a Finnish Aapa mire 
complex using the Spectral Angle Mapper (SAM) classifier. Classification performance assessment was supported 
by calculating a water index from the UAV-information. Additionally, we examined the transferability of site- 
specific spectral libraries to an aapa mire with similar vegetation. The results showed little spectral variation 
in the plot spectrum between the sensors. A fusion of species- and plot-level libraries yielded the highest accuracy 
of 62 %. For both mires, there was a great variation among the class accuracies. Floating mosses had an accuracy 
of 86 %, followed by lawn-forming Sphagnum balticum with 77 %. For the test site, the latter species was mapped 
with an accuracy of 59 %. Red moss species achieved low accuracies of 45 % and 38 %, likely due to effects from 
sub-pixel and mixed-pixel effects of neighbouring graminoid species and the presence of litter. This might have 
also enhanced the contrast of adjacent pixels contributing to spectral alterations. Water table depth measure
ments and the water index revealed a hydrological preference for most species, with classification performance 
notably improving with higher water index values. We recommend collecting on-site hyperspectral information 
at varying hydrological circumstances to build a comprehensive spectral library for mire vegetation and 
modelling.

1. Introduction

Detailed vegetation modelling of peatlands is needed to support 
climate modelling, land use management, and restoration efforts in the 
face of environmental changes. In waterlogged peatlands, often referred 
to as mires, plant communities and species give insight into ecosystem 
functioning (Hájek et al., 2011; Korrensalo et al., 2016; Mathijssen et al., 
2019; Ward et al., 2015). Here, Sphagnum mosses are good indicators for 
peatland dynamics and succession trends (Granath et al, 2010; Kolari 
et al., 2021), as they have certain water table depth and pH optima 
(Andrus et al., 1983; Andrus, 1986) and can be divided into generalist 
and specialist (Johnson et al. 2015; Tahvanainen and Tolonen, 2004). 

Changes in environmental conditions may result, however, in altered 
key species’ spatial distribution and a shift from one successional stage 
to another (Laine et al., 2011; Väliranta et al., 2017). For instance, an 
increase of bog over fen vegetation has been observed for boreal peat
lands (Granlund et al. 2022; Kolari et al. 2022) emphasising the need to 
monitor peatland dynamics and to recognize species distribution pat
terns, ideally under consideration of the hydrological site conditions.

Hyperspectral imaging is a part of remote sensing-based spectros
copy and gives the opportunity to assess these complex vegetation pat
terns and their link to hydrological site conditions. The added value is 
due to the narrow-band assemblage providing finer spectral details than 
by broad-band multispectral and RGB sensors. Important pigments are 
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chlorophyll a and chlorophyll b, which strongly absorb visible wave
lengths at approximately 430 and 660 nm, and at 450 and 640 nm, 
respectively (Chen and Blankenship, 2011; Lichtenthaler and Busch
mann, 2001; Ustin et al., 2009). In contrast, carotenoids and sphag
norubin are responsible for the reddish coloration of some Sphagnum 
species. Carotenoids contribute to photosynthetic activities by absorbing 
light primarily between 400 – 500 nm and provide hues ranging from 
yellow to red (Harris, 2008). Sphagnorubin, on the other hand, causes 
absorption peaks around 500 – 550 nm leading to the intense red 
coloration observed in certain species (Berland and Andersen, 2021). 
Water content and water retention are also important, as water causes 
prominent absorption features at about 970 and 1200 nm (Caturegli 
et al., 2020; Clevers et al., 2008; Granlund et al., 2018).

The required spectral information can be recorded with different 
sensors and platforms. Common point spectrometers used in proximal 
sensing excel at capturing spectral features of species in the laboratory 
or plant communities in the field but lack spatial information. In 
contrast, satellite images and data collected from Unoccupied Aerial 
Vehicles (UAVs) provide spatially explicit information over larger areas. 
Spectral imaging devices for field data collection offer an intermediate 
solution by combining spectral and spatial information at species level. 
Acquiring field-collected species data, in addition to UAV data, helps in 
understanding spectral responses at different spatial scales (Rautiainen 
et al., 2018). Field spectra can provide a fine level of detail needed to 
upscale information, as challenges arise when directly coupling labo
ratory with satellite- and UAV-based remote sensing products (Bubier 
et al., 1997; Cole et al., 2014a; Erudel et al., 2017; Harris et al., 2015). 
However, variations in acquisition altitude and remote sensing plat
forms cause differences in the retrieved spectra. Common reasons 
include mixed pixels, atmospheric noise, and the adjacency effect 
(Kaufman, 1984), which involves the influence of neighboring pixels on 
target pixels, altering their spectral characteristics. Spectral information 
of different platforms or sensors can be stored as spectral libraries across 
different wavelengths. Accessible mire vegetation data in form of spec
tral libraries has been scarce (Salko et al., 2023). The risk of using 
available plant spectra information is the temporal mismatch between 
the library reference data and the image data used for the modelling 
process. Nevertheless, the selection of spectral libraries expands grad
ually (Kokaly et al., 2017) and is used for vegetation analysis (Cunnick 
et al., 2023).

Previous vegetation modelling or classification has usually been 
constrained to peat- and wetland types, plant functional types (PFTs), 
and plant communities (Cristóbal et al., 2021; Schaepman-Strub et al., 
2009; Schmidt and Skidmore, 2003). The accuracies vary between 
moderate and good, often declining with increased vegetation detail or 
higher heterogeneity, favouring four to five classes linked to distinct 
micropatterns (Arkimaa et al., 2005; Middleton et al., 2012; Räsänen 
et al., 2020). However, feedback mechanisms, triggered for instance by 
variation in photosynthesis rate and species composition (Breeuwer 
et al. 2008; Kokkonen et al., 2022; Robroek et al., 2007), require species 
level information. Here, UAVs are advantageous, as they provide a high 
spatial resolution relevant to monitor complex vegetation patterns such 
as in mires, and in turn cover a larger spatial extent with more side- 
variation than field imager or spectrometer. The development of 
hyperspectral UAV sensors allows capturing site conditions at a spectral 
and spatial scale that is relevant for mire vegetation modelling. The 
substantial interplay between vegetation type, hydrological conditions, 
and spectral response, specifically due to the water retention capabilities 
of Sphagnum mosses (Bryant and Baird, 2003; Meingast et al., 2014; Neta 
et al., 2011; Stuart et al., 2022) likely can be recognized using UAV- 
based spectroscopy. Hydrological variables, such as water content and 
prevailing moisture, affect the spectral responses of species (Arkimaa 
et al., 2009, Harris et al., 2005), posing a challenge for image classifi
cation. Despite this indispensable relationship, research has been limited 
to laboratory assessments in controlled environments. For large-scale 
remote sensing-based assessments, it is essential to understand the in- 

situ spectral information of moss species and how mapping accuracy 
varies along hydrological gradients, acknowledging that side conditions 
impact spectral properties and modelling performance. Our study 
therefore aims to contribute to peatland monitoring, allowing for a more 
comprehensive understanding of data acquisition times and shed light 
on potentially needed hydrological correction factors.

Showcasing two aapa mires in North Karelia, Finland, and using field 
hyperspectral handheld and UAV-information, this study 1.) explores 
the potential and limitations of multi-source and multi-scale spectral 
libraries to model the distribution of dominant Sphagnum mosses, and 
2.) examines the spatially varying impact of hydrological conditions on 
classification.

2. Research sites and data acquisition

2.1. Research sites

The research sites situated in North Karelia, Finland, represent 
typical aapa mire complexes with fen and bog features and micro
patterns (Fig. 1). They are characterized by elevated hummock forma
tions and lower lawns at the margins typical for bogs, as well as wet 
areas referred to as (wet) flarks with occasional water at the surface 
crossed by hummock-forming strings as fen characteristics. The transi
tion between bog and fen is marked by lawns and carpets of Sphagnum 
mosses.

An overview of the prevailing species can be found in Table 1. Ila
jansuo mire served as the research site, for which all data sets have been 
acquired. Viitasuo mire was our test mire, at which we applied the 
developed approach. Although this aapa mire shows the same elements 
as Ilajansuo mire, we selected an extent that excluded the wet flark area 
to a large share (see Section 2.5).

2.2. Data collection

2.2.1. Vegetation collection
We collected vegetation data from field plots with species inventory 

from 32 locations in August 2022 focusing mainly on homogenous 
Sphagnum moss plots using a 30 x 30 cm2 vegetation square (Table 1). 
The vegetation plots were selected randomly but as spatially equally as 
possible with plot locations chosen to be both representative and sur
rounded by minimal variation in the immediate neighbourhood. Addi
tional plots with the same dimension from a previous field work session 
in 2020 served as a more comprehensive data set. This original dataset 
was collected over a larger area using a stratified random sampling 
approach aimed at modelling plant communities, as described in Wolff 
et al. (2023). Within the study extent of this research, 40 plots featured a 
mix of nearly pure Sphagnum mosses and mixed vegetation relevant to 
this study. The plot locations were measured with Trimble R10 RTK- 
GNSS (Real-Time Kinematic Positioning-Global Navigation Satellite 
Systems) providing coordinates with 1–2 cm accuracy. Species identity 
and coverage in percentage was noted. For Viitasuo mire, 24 vegetation 
plots documented using the same stratified random sampling scheme as 
for Ilajansuo mire during the same field campaign in 2020 were used in 
this study. For each plot at both sites (in Ilajansuo for both years), we 
noted down the water table depth (WTD).

2.2.2. Handheld imagery
Handheld hyperspectral imaging of the 32 vegetation plots was done 

on 11 August 2022 under clear sky conditions with occasional clouds 
using the push-broom camera Specim IQ by Specim Ltd covering a 
wavelengths range of 400–1000 nm with a resolution of 512 x 512 pixels 
and 112 spectral bands. Image acquisition was only carried out under 
clear sky conditions from approximately 10 AM until 6 PM. The device 
was placed on a tripod with approximately 1 m between camera and 
vegetation plot.

Wet locations of the flark were left out because the tripod did not 
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remain stable. Under field conditions with unsteady ground, we 
employed a spirit level to reach an angle as close to nadir as possible. For 
each of the 32 vegetation plots, handheld imagery covered the entire 
vegetation square and was acquired with two or three replicates for each 
plot to compensate for possible changes in illumination and change in 
sun angle. The exposure time varied depending on the lighting condi
tions. During the recordings, we placed a close to 100 % Spectralon® 
white reference panel next to the frame.

2.2.3. UAV-imagery
The UAV hyperspectral flight was carried out with the push-broom 

camera Specim AFX 10 by Specim Ltd at an altitude of about 100 m 
under clear sky conditions in Ilajansuo on 11 August 2022 and in 

Viitasuo on 8 August 2023 at approximately solar noon. This sensor 
covered the wavelength range from 400 – 1000 nm with spectral binning 
of 4 resulting in 112 bands of 5.5 nm spectral resolution for the imagery. 
Spectral binning compressed these to 112 bands. The UAV-data of Vii
tasuo mire acquired at the same point in time one year later allowed 
testing the temporal robustness of spectral libraries in a similar mire 
with known vegetation. For radiometric calibration and correction, 
three different calibration targets were spread with a reflectance of 2 %, 
9 %, and 46 %. For Ilajansuo mire, we placed three Ground Control 
Points (GCPs) and recorded the position of these with RTK-GNSS device. 
In addition to the hyperspectral flight, we also conducted a multispectral 
UAV-flight with MicaSense Altum PT in both sites covering a slightly 
larger area. These were used in this study only for the enhancement of 
georeferencing facilitated by the built-in RTK positioning system.

3. Methodology

The workflow consists of processing the image data, the establish
ment of three different spectral libraries for image classification using 
the Spectral Angle Mapper (SAM), and the performance assessment. Key 
steps are here the spatial variation assessment of the target species and 
vegetation plots, as well as the accuracy assessment and water index 
(WI) explaining the SAM results. Fig. 2 provides an overview of these 
essential steps that are elaborated on in this section.

Fig. 1. The aapa mires Ilajansuo and Viitasuo and their location along the mire vegetation zones in Finland (© SYKE, Finland) shown using RGB-band combinations 
of the hyperspectral UAV data (R: 676 nm, G: 541 nm, B: 435 nm). Vegetation plots of 30 x 30 cm collected in the years 2020 and 2022 are shown in red and yellow 
markings, respectively. The latter indicated those plots, for which Specim IQ handheld hyperspectral images were recorded according to a setup shown in the image.

Table 1 
Species present in the vegetation plots of Ilajansuo.

Sphagnum mosses Graminoids Other vascular plants

Sph. balticum Eriophorum vaginatum Andromeda polifolia
Sph. fuscum Scheuchzeria palustris Betula nana
Sph. jensenii Carex limosa Empetrum nigrum
Sph. medium coll. Carex rostrata Drosera anglica
Sph. majus Carex chordorrhiza Drosera rotundifolia
Sph. papillosum ​ Rubus chamaemorus
Sph. rubellum ​ Vaccinium oxycoccos
Floating mosses ​ Vaccinium vitis-idaea
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3.1. Data processing

The processing of the UAV-hyperspectral imagery with a spatial 
resolution of 8 cm involved several steps using the software ENVI 
version 5.6.3 (Exelis Visual Information Solutions, Boulder, Colorado) 
and CaliGeo Pro version 2.6.1, an ENVI plug-in created by Specim Ltd. 
First, the raw AFX 10 sensor data was converted into radiance data and 
georeferenced in CaliGeo Pro. The initial process involved subtracting 
the dark image from raw numbers, utilizing factory calibration data for 
spectral radiance conversion. The flight lines were georeferenced 
achieving centimetre-level horizontal accuracy by image alignment 
resulting in a high accuracy multispectral UAV orthomosaic. Reflectance 
values were obtained by incorporating reflectance panels visible in the 
UAV image. We applied an Empirical Line Correction in ENVI to correct 
for atmospheric influence. The image showed minimal noise throughout 
the entire image, with even illumination and very little shadow due to 
the flat terrain, thus, topographical corrections were not applied. Due to 
the flat terrain, no separate consideration of the sun angle was done. In 
opposite to the Specim AFX 10, the handheld device Specim IQ records 
for radiometric calibration a white and a dark reference image, of which 
the first refers to the calibration panel in the field. The dark reference is 
created automatically by closing the shutter of the camera during the 
recording. After the recording process, the device automatically re
trieves the reflectance values with these. For further usage, we extracted 

the image pixels within the vegetation frame, while discarding the pixels 
from the frame itself, the adjacent shadow pixels, and those located 
outside of the frame. 2–3 image replica were available to account for 
possible changing circumstances. The spectral range of both devices was 
filtered to 420 – 980 nm with a total of 104 bands.

3.2. Spectral library preparation

Spectral information from the handheld and UAV images is stored in 
spectral libraries. Three separate libraries were created containing a) 
species level data from the handheld device, b) plot level data from the 
handheld device, and c) plot level data from the UAV sensor (Fig. 3).

At species level, the delineated regions of interest (ROIs) comprised 
at least 50 image pixels each, and for each species between 30–55 re
gions regardless of weakly or strongly illuminated pixel. The value of all 
pixels per species was averaged. The result was a spectral library with 
Sphagnum species labels for the classification process. For the second 
library all pixels within the vegetation plot recorded with the handheld 
device were extracted and averaged, representing plot level spectral 
information. The UAV plot-level library also used all averaged pixels 
within the vegetation plot (i.e., six image pixels). To each plot, labels of 
dominating Sphagnum moss species were assigned with the criteria that 
one moss species had to cover more than 80 % of the plot. This threshold 
to ensured the (spectral) dominance of the corresponding species. 

Fig. 2. The post-processing steps using the end-products of the hyperspectral image data. The grey shapes relate to the information derived from the UAV reflectance 
end-product and the light blue shapes the respective information from the handheld camera. Red outlined steps emphasise key aspects investigated in this study.

Fig. 3. Three spectral libraries stored the spectral information captured at different altitudes with the sensors Specim IQ and Specim AFX 10. Manually selected 
regions of interest (ROIs; blue outlines) delineated the pixels of the target species. At both plot levels, the pixels within the vegetation plot were used (orange frame 
and orange polygons).
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Although the images revealed also other plants, we lacked sufficient 
spectral information of these to feed separate library entries. Due to 
mixed vegetation in the field, a separate entry labelled as such con
taining spectral information of Andromeda polifolia, Empetrum nigrum, 
Eriophorum spp., and Rubus chamaemorus in addition to spectrally 
abundant litter (i.e., dead biomass) was added. We labelled those plots 
as mixed vegetation, where the moss abundance was less than 80 %. It 
was not possible to record images in the wettest part of the mire that 
exhibits floating and submerged mosses. Therefore, the ROIs of the 
floating mosses were delineated on the UAV image and formed a sepa
rate library entry for the classifications.

3.3. Water index

We calculated a water index as a proxy for hydrological conditions in 
mires to investigate its impact on image classification. Based on the 
spectral profiles and available bands, we created the water index (WI) 
(Penuelas et al., 1997) using bands in the near-infrared region as 
follows: 

WI = B900/B950 

The relationship between the calculated Water Index (WI) and 
measured water table depths (WTD) in Ilajansuo mire for the year 2022 
was assessed using statistical analysis in R (for more details, see section 
3.5). Additionally, we had recorded WTD measurements for both mires 
in 2020. While recognizing the differences in measurements between the 
years, we assume that at species level the WTD changes may reveal a 
proportional relationship. Thus, we also compared the WI to the WTD of 
2020 for Viitasuo mire while acknowledging that species may have 
different sensitivities to changes in water conditions.

3.4. Classification of UAV-data

We used the algorithm of Spectral Angle mapper (SAM) to classify 
the Ilajansuo mire with our multi-source and multi-scale spectral li
braries. In addition, we applied these also to our test site Viitasuo mire 
that show the same aapa mire elements. An overview of the models and 
their spectral library input can be found in Table 2.

3.4.1. Spectral angle Mapper
Often used in hyperspectral image classification the SAM algorithm 

compares the spectral information of image spectra with reference (li
brary) spectra and calculates the spectral angle for different combina
tions of bands. A smaller spectral angle indicates a better match between 
the spectral library as reference data and the image reference data. We 
employed the Python tool package Hylite (Thiele et al., 2021), where the 
angle threshold is automatically set to the smallest, most ideal angle for 
matching the spectra. Here, each pixel is classified by being assigned to 
the spectral library class that is the most similar. The inputs for the 
classification are the hyperspectral UAV image and the spectral libraries 
(i.e., either individually or as a combination). The output is a classifi
cation image and a rule image with the spectral angle information. SAM 
is a simple similarity measure for spectral mapping compared to 

machine and deep learning techniques. However, it reveals a low 
sensitivity towards illumination artefacts as it uses the spectral shape 
rather than the absolute magnitude (Kruse et al., 1993). The advantage 
of using SAM is that the “curse of dimensionality” does not apply to that 
method, while learning-based classifiers require a dimensionality 
reduction to minimize redundance in the data (Hughes, 1968).

3.4.2. Accuracy assessment
Image classification accuracy is evaluated through a confusion ma

trix providing overall, user’s and producer’s accuracy. User’s accuracy is 
the proportion of correctly classified pixels for a specific class, while 
producer’s accuracy measures the proportion of correctly identified 
pixels out of the total actual instances of a class. The spectral libraries 
contained on purpose classes for which it was known that they do not or 
only to a small extent exist in the test site’s UAV-image scene. If the 
algorithm does not correctly classify pixels into those classes, the success 
cannot be expressed as any statistical metric due to the inevitably 
missing reference data of these “missing” species. Thus, we will discuss 
the outcome in the entire context of classification accuracy rather than 
placing weight solely on a confusion metric.

3.5. Statistical analysis

The statistical analysis explored the influence of hydrology on spe
cies distribution, spectral angle selection, and the subsequent impact on 
classification performance. Due to the not normal distributed nature of 
our data, we chose exclusively non-parametric tests. We first applied the 
Spearman correlation between the numerical variables (i.e., WI, spectral 
angle) among the species classes to test whether there is a preference for 
these along a certain WI and spectral angle range. Thereafter, the Mann- 
Whitney/Wilcoxon rank-sum test compared for each species the classi
fication outcome (correct and incorrect) against the WI and spectral 
angle to evaluate whether the classification performance is better or 
worse at a certain range of these variables. Post hoc tests included the 
Dunn’s test for multiple comparisons after the Kruskal-Wallis test. To 
model the probability of correctly classified species as a function of 
angle and WI (i.e., combined impact), we employed a Logistic Regres
sion Model. The water-saturated floating moss regions with occasional 
surface water were excluded from the statistical analysis. The analyses 
were performed with R statistical computing environment version 4.2.3 
(R Core Team, 2022) using base R package for specific analyses and 
ggplot2 package for visualizations. The data were analysed for statistical 
significance with a confidence level (p-value) of 0.05 for all tests.

4. Results

4.1. Spectral variation across species and libraries

All species had similar complex and partly overlapping spectra, with 
some minor, small-scale variations below 0.05 in reflectance. These 
values represented averages derived from multiple measurements, and 
as such, some degree of natural variation is expected in real-world 
conditions. Spectral separation was evident in the visible range of the 
spectrum between 550 – 680 nm with the shift of the reflectance peak for 
the red mosses Sphagnum medium coll. and Sphagnum rubellum, as seen in 
the derivatives as features at 620 nm (Fig. 4). In contrast, Sphagnum 
balticum and Sphagnum majus exhibited a yellowish appearance between 
500 – 600 nm, where carotenoids absorb light, highlighted as reflectance 
features in the derivative profile at 550 nm. Sphagnum papillosum 
showed a reflectance feature at 510 nm and absorption features at 640 
and 660 nm. The red-edge range, characterized by a sharp increase in 
reflectance, is notably marked by a derivative peak around 710 nm. 
Generally, the visible range of the spectra exhibited clear differences as 
emphasized by the derivatives, while the near-infrared wavelengths 
indicated random variation.

There was only minor variation between the plot level signatures 

Table 2 
The Spectral Angle Mapper (SAM) models and the corresponding spectral library 
reference data divided into libraries using only mosses and those including 
additionally mixed vegetation. Listed is further the spectral origin of the 
libraries.

SAM Spectral library: Moss SAM Spectral library: Moss þ
mixed vegetation

Model 1 Species Model 5 Species
Model 2 Plot level Model 6 Plot level
Model 3 UAV plot-level Model 7 UAV plot-level
Model 4 Species + Plot level +

UAV plot-level
Model 8 Species + Plot level + UAV 

plot-level
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recorded from the two different sensors and altitudes despite the sig
nificant acquisition difference of 90 m (Fig. 5). The largest variation 
started at the red-edge region around 710 nm with about 0.05 in 
reflectance. The data used to set up the spectral libraries as recorded 
from different sensors and altitudes deviated predominantly in this 
specified region but stayed below 0.1. The first derivatives of Specim 
AFX 10 revealed at UAV-level random variation independently of the 
wavelength. Considering the individual species in this plot, Andromeda 
polifolia and Rubus chamaemorus had a reflectance peak at 550 nm, 
whereas Sphagnum fuscum reflected the strongest at approximately 650 
nm. At this wavelength, also the plot level reflectance captured with 
both Specim IQ and Specim AFX 10 showed a reflectance feature. The 
reflectance properties at plot level (handheld and UAV) clearly showed a 
synergy of the three species’ spectral contribution.

The most significant spectral variation was found in moss-dominated 
plots that host a variety of other vegetation types (i.e., Sphagnum pap
illosum-dominated). Despite these non-moss species covering only a 
small percentage of the plot, their contribution to the overall spectral 
mix was undeniable. This small share of spectral variation was distinct 
and significantly different from that of the mosses, resulting in a note
worthy cumulative effect, particularly on the overall spectral charac
teristics as emphasized by the UAV plot information (Fig. 6). Notably, 
the interquartile range remained within the range of 0.05 in reflectance 
up to 680 nm, after which it expanded to 0.12 in reflectance. Sphagnum 
papillosum is commonly found in flark strings, which include species 
such as Betula nana, Andromeda polifolia, Drosera rotundifolia., and gra
minoids. As a result, this moss class expressed the highest level of di
versity and hence, highest spectral variation.

4.2. Spectral angle Mapper

In our step-wise inclusion of the multi-scale and multi-source spec
tral libraries, we achieved good to moderate results for the classifica
tions. The highest overall accuracy was 62 % for Ilajansuo mire 
including all libraries (Model 4; see Table 3). As a general trend, the 
models with the mixed vegetation reached lower accuracies for both 
mires.

Fig. 7 shows the location of the mixed vegetation, which was largely 
classified where either Sphagnum fuscum, the red mosses, or Sphagnum 
papillosum were present. These classes are expected to have the largest 
shares of miscellaneous vegetation, including litter.

Among the species, there was a noticeable misclassification trend 
between Sphagnum jensenii, Sphagnum majus, Sphagnum papillosum, and 
Sphagnum balticum. Although the class floating mosses achieved the best 
overall accuracy with 86 %, Table 4 points out that a share was mis
classified as Sphagnum jensenii, which is a species of wet habitats that, 
among others, forms part of the largely submerged floating moss class.

At Ilajansuo mire, it became evident that the red moss species 
Sphagnum medium coll. and Sphagnum rubellum had the least accuracies 
(Table 4). While 28 % of Sphagnum medium coll. were detected correctly, 
the model incorrectly identified the remaining cases as Sphagnum 
rubellum, Sphagnum balticum, and Sphagnum papillosum. Conversely, the 
high user’s accuracy of 63 % had the remaining instances being wrongly 
predicted as Sphagnum rubellum. The accuracies of this moss were 
opposite to those of Sphagnum medium coll. The producer’s accuracy was 
moderate at 47 % (mainly misidentifying instances as Sphagnum medium 
coll.), while the user’s accuracy was only 28 % due to misclassification 

Fig. 4. Spectral profiles (left panel) and first derivatives (right panel) of Sphagnum mosses recorded with the hyperspectral handheld camera Specim IQ.

Fig. 5. The spectral deviation of a Sphagnum fuscum-dominated plot recorded at species- and both plot levels with Specim IQ (black line) and the UAV-sensor Specim 
AFX 10 (grey line). Species occurring in this plot are Andromeda polifolia (blue line), Rubus chamaemorus (orange line), and Sphagnum fuscum (green line). Spectral 
reflectance is displayed in the left panel and the corresponding first derivatives in right panel.
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into Sphagnum fuscum and Sphagnum medium coll.
Yet, the classification using only the UAV-spectral library increased 

the accuracy of Sphagnum medium coll. by 20 %. While Sphagnum balti
cum reached a higher accuracy compared to other species with 59 %, 
Viitasuo mire had generally much lower overall accuracies for all runs. 
The hyperspectral image extent of Viitasuo mire did not cover the wet 
flark area, which is why some species were expected to be classified as 
minorities or not at all given that all spectral libraries entries from Ila
jansuo site were used as a test. Excluded correctly from the accuracy 
assessment were the wettest classes Sphagnum jensenii and floating 
mosses as well as Sphagnum rubellum, which do not occur in this clas
sified extent and in the ground truth data.

4.3. Performance along the hydrological gradient

We examined the best moss classification outcomes by setting these 
in relation to the moisture conditions and spectral angle used in the SAM 
algorithm. In Viitasuo, this means that the non-existent classes 
Sphagnum jensenii and Sphagnum rubellum were excluded. For both mires, 
we also excluded the class floating mosses from the following assess
ment, as these represented the wettest area with a distinct high WI and a 
composition of several moss species. Variables tested were the measured 
WTD, WI, spectral angle, species category (ground truth), and the cor
rectness of the classification. In the following, we present the most 

relevant results; more details can be found in the appendix.
The correlation for Ilajansuo mire showed a significant relationship 

between the WI and the WTD measurements with varying degrees of 
significance among the classes; the Sphagnum papillosum-dominated 
class was the exception with no significant result. The strongest rela
tionship was evident for the classes Sphagnum balticum, Sphagnum jen
senii, and Sphagnum rubellum. Conversely, the relationship between WI 
and spectral angle was significant for the classes Sphagnum fuscum, 
Sphagnum medium coll., Sphagnum majus, and Sphagnum papillosum. For 
Viitasuo mire, the relationship between WI and WTD was highly sig
nificant for Sphagnum balticum, Sphagnum. fuscum, and Sphagnum majus. 
The highly significant relationship between WI and spectral angle was 
here indicated for all Sphagnum-dominated classes except Sphagnum 
medium coll. The Kruskal-Wallis test showed significant differences in 
the distribution of WI across the different moss species. The Dunn’s post 
hoc test for pairwise comparison between the moss classes for Ilajansuo 
revealed significant differences in WI between Sphagnum mosses 
(Sphagnum balticum, Sphagnum fuscum, Sphagnum medium coll., 
Sphagnum majus, and Sphagnum papillosum), indicating their different 
preferences along the WTD gradient (Fig. 8).

Based on the Dunn’s test results, Sphagnum jensenii and Sphagnum 
rubellum were more similar to the broader dataset and might not have 
carried as much ecological significance in terms of WI variation. The 
multi-class comparison revealed significant spectral angle differences 
among Sphagnum fuscum, Sphagnum majus, and Sphagnum papillosum. In 
the case of Viitasuo, significant differences in WI were found between all 
classes in pair-wise comparisons, this was also the case for the spectral 
angle among the classes. Lastly, we compared if the spectral angle and 
WI separately affect the classification performance for the moss-classes 
(i.e., correctly and incorrectly classified) using Wilcoxon rank-sum test 
(Mann-Whitney U test). The outcomes pointed out that classification 
performance was weaker with lower WI (Fig. 9), which means that 
performance was better in wetter areas for all classes except Sphagnum 
balticum and Sphagnum papillosum at Ilajansuo mire. Thus, it suggested 
that the performance of the classification is affected by the WI or spec
tral angle for individual classes. Due to the insufficient ground truth 
amount at the Viitasuo mire, this test only highlighted a statistical sig
nificance for the Sphagnum fuscum-dominated class. Sphagnum majus was 
excluded from this analysis in the first place, as it included only incor
rectly classified values.

The logistic regression model for this research site revealed a com
bined impact of angle and WI for Sphagnum jensenii, Sphagnum medium 

Fig. 6. Class-internal, spectral variation of the Sphagnum papillosum-dominated plot extracted from UAV data. This class was selected as it exhibited the highest 
species diversity. The boxes show the interquartile range containing the middle 50% of the data with the line representing the median and the whiskers the data 
range with outliers indicated as individual points. Common wavelengths for chlorophyll a, chlorophyll b, and the water index are highlighted.

Table 3 
The classification results obtained using the Spectral Angle Mapper (SAM) with 
overall accuracies in percentage for Ilajansuo mire. Division shows mosses and 
mosses with mixed vegetation subdivided into models, each fed with different 
libraries.

SAM Spectral Library

Moss Overall accuracy

Model 1 Species 48 %
Model 2 Plot level 58 %
Model 3 UAV plot-level 57 %
Model 4 Species + Plot level + UAV plot-level 62 %
​ Moss þ mixed vegetation ​
Model 5 Species 43 %
Model 6 Plot level 50 %
Model 7 UAV plot-level 48 %
Model 8 Species + Plot level + UAV plot-level 55 %
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coll., and Sphagnum majus.

5. Discussion

We explored the application of state-of-the-art hyperspectral imag
ing devices to establish spectral libraries of Sphagnum mosses for image 
classification purposes. In this context, we sought better understanding 
in the spectral complexity among and between species and the impact of 
hydrological circumstances in aapa mires.

5.1. Multi-source and multi-scale libraries

Our study showed that the individual spectral signatures obtained by 
hyperspectral imaging matched with those presented in several previous 
studies (Lees et al., 2020; Salko et al., 2023; Tucker et al., 2022; Ustin 
et al., 2009). The spectral structures were generally complex and simi
larly shaped with the best separation of species in the visible region of 
the spectra. The spectral variation that increased in random appearance 
particularly in the near-infrared wavelengths range marked the atmo
spheric interference recorded with the sensors. While the derivatives 

potentially pinpointed water absorption features between 940 – 960 nm 
(e.g. for Sphagnum papillosum), it must be noted that these were in the 
range with lowest signal-to-noise ration. Despite the spectral similarity 
as shown by the derivatives of Sphagnum balticum and Sphagnum majus in 
the visible spectral range, the misclassification among these species 
remained rather minimal. Regardless, at plot level both sensors showed 
similar spectral properties with random variation in the near-infrared 
range. The general and gradual spectral deviation was also here likely 
affected by atmospheric interference (Pillay et al., 2020). As the UAV 
information at plot level showed random variation across the entire 
spectrum, it is likely that the acquisition altitude with the variation in 
incoming signal has caused this. Although these spectral deviations 
might be small, it can still have implications for up- and downscaling in 
remote sensing applications. Spectrometric parameters derived from 
multi-source and multi-scale libraries revealed rather consistent widths 
and depths of absorption and reflectance features across sensors with 
some exceptions. This result coupled with the noise in the near-infrared 
wavelengths question the effectiveness of more complex classifiers (i.e., 
random forest) and spectral unmixing algorithms, which are commonly 
used for hyperspectral analysis and rely on leveraging distinct features.

Fig. 7. Spectral Angle Mapper classification outcome of Ilajansuo mire using all spectral libraries excluding mixed vegetation. Hatched areas symbolize the pro
portion of mixed vegetation produced separately.

Table 4 
The confusion matrix for the best moss classification result of Model 4 with the combined spectral libraries of species-, plot-, and UAV plot-level excluding the mixed 
vegetation entry. Entries show the number of instances used in the classification; the accuracies are in percentage.

Species Sph. 
balticum

Sph. 
fuscum

Sph. 
jensenii

Sph. med. 
coll.

Sph. 
majus

Sph. 
papillosum

Sph. 
rubellum

Floating 
moss

User’s 
Accuracy

Sph. balticum 183 0 0 14 25 12 4 0 77
Sph. fuscum 4 65 7 7 1 6 0 0 72
Sph. jensenii 10 0 91 0 30 52 0 36 42
Sph. med. coll. 0 1 0 20 0 0 11 0 63
Sph. majus 28 2 16 4 70 19 9 0 47
Sph. papillosum 4 15 0 12 6 90 1 0 70
Sph. rubellum 7 32 0 14 3 0 22 0 28
Floating moss 0 0 0 0 0 0 0 96 100
Producer’s 

Accuracy
78 57 80 28 52 50 47 73 0.62
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5.2. Spatial distribution of Sphagnum mosses

Despite the subtle differences at plot level, the results hinted that the 
additional spectral information gained from different altitudes and 
sensors may enhanced the classification results. It consequently suggests 
that the spectral angle threshold selection was better defined. However, 
the spectral angle of the true locations of Sphagnum majus and papillosum 
were so close that this class relation was noticeable in the accuracy 
assessment. Adjusting the spectral angle would have, in turn, excluded 
some pixels from their correct class. Generally, the accuracy can be 
categorized into the same reports from mire vegetation mapping 
(Räsänen et al., 2019; Wolff et al., 2023).

The water index was significantly higher for Viitasuo mire 
throughout the study extent compared to the Ilajansuo mire. We ex
pected a moisture-induced bias in spectral response due to drier cir
cumstances at the time of handheld hyperspectral imaging in Ilajansuo 

when applying this data to classify Viitasuo. Despite the low accuracy for 
this site, floating mosses and Sphagnum jensenii were correctly excluded, 
which is therefore a success. Further, Sphagnum rubellum had a low 
abundance as correctly shown by the classifications for both mires. 
Therefore, the modelling results accurately mirrored the logical 
arrangement of species in Ilajansuo and Viitasuo mire, although other, 
unsampled species occur in both sites.

During the vegetation survey, most plots exhibited 100 % moss 
cover, but some had less coverage or had an overstory of vascular 
vegetation, which is why the sampling schema and target classification 
can be one uncertainty cause. In situations where mixed vegetation was 
scattered across the plot, a mixed spectral response for the concerned 
pixels compared to the neighbouring moss pixels was expected, but still 
within an acceptable spectral threshold for the SAM algorithm. Indeed, 
this assumption has been confirmed, as the Sphagnum fuscum-dominated 
class with scattered vascular plant presence was sill classified 

Fig. 8. The spatial variation of the water index (WI) across Ilajansuo mire (upper panel) and the moss species’ location along this index as derived from the ground 
truth location (lower panel), with the point in the violins indicating the median value.
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accurately. Considering that SAM classified those pixels with overstory 
to the correct, dominant moss species successfully highlights the 
robustness of this simple algorithm. Upon closer inspection it became 
apparent that only Sphagnum medium coll. had some edge pixels with a 
high graminoid abundance that led to misclassifications, potentially 
affected by neighbouring litter contributing to the reflectance 
(Middleton et al., 2012). Although no wind persisted on the day of image 
acquisition, any small-scale movement of taller graminoids (alive or as 
litter) could have caused the plant blades outside the plot edge to lean 
into the plot while being recorded with the UAV. This would result in a 
different spectral composition than captured in the field. In this case, the 
sub-pixel effect likely has caused different species to be present within 
one pixel. On the other hand, the hyperspectral UAV resolution was 8 
cm, which could have caused a mixed pixel effect for those instances 
with high site-heterogeneity due to the small size and intricate distri
bution of peatland vegetation. Although being associated with atmo
spheric scattering, the adjacency effect must be considered as well, as 
the spectral reflection of (graminoid) litter is high in magnitude and 
ultimately creates a strong contrast between these regions and the living 
Sphagnum-dominated vegetation adjacent to it. This issue could be 
mitigated by applying advanced atmospheric correction methods, such 
as ACTOR or FLAASH (Cooley et al., 2002; Marcello et al., 2016; Richter, 
1996; Richter & Schläpfer, 2015). We recommend adjusting the sam
pling scheme based on the spatial resolution of the reference imagery, 
especially when targeting species-level classification, such as single- 
point recordings of the target species situated in a homogeneous area 
of 15 cm diameter.

5.3. Performance along the hydrological gradient

Our study suggests a species preference along a partly overlapping 
hydrological gradient and the possibility that hydrological circum
stances may affect the separation of species. This is mirrored by our 
image classification performance tending to be better with increasing 
WI. For these aapa mires, ongoing fen-bog transitions have been 
discovered (Kolari and Tahvanainen, 2023). Changes in hydrological 
and climatic conditions may result in adjusted productivity and growth 
forms (i.e., longer shoots or compactness) (Bengtsson et al., 2021; Heck 
et al., 2021), potentially affecting also spectral properties (Clymo, 1970; 
Rastogi et al., 2020). Further, slowly changing microhabitat formations 

and shading (e.g. by vascular plants) can affect the pigmentation and 
ultimately the presence of Sphagnum species (Bonnett et al., 2010). Thus, 
adjustments of the angle threshold for classification are necessary in 
response to shifts in environmental conditions. Notably, this holds true 
as well for the phenological cycle and seasonal variations with changes 
in pigments. The “perfect” time window for vegetation modelling has 
been previously discussed (Cole et al., 2014b; Pang et al., 2022). Our 
study suggests selecting a time for image acquisition avoiding drought, 
excessively hot days, or an extended period of temperatures higher than 
average. If libraries should be used across space and time the adaption 
can be done in two ways. First, by collecting more (spectral) ground 
truth data at different time points to compensate for the wetness and 
moisture variation, including also short-wave infrared wavelengths to 
enhance species separation (Pang et al., 2020). Second, to correct for 
spectral variation by having several UAV- or satellite imageries. These 
comprehensive libraries would allow for the application across mires 
globally, to correct for seasonal affects, and to even model scenarios in 
vegetation distribution. For a more comprehensive examination of the 
mosses’ spectral response to important drivers in mires, a similar study 
could be conducted in paludiculture or restoration sites.

6. Conclusions

This study presented a novel hyperspectral imaging approach to 
investigate spectral characteristics of Sphagnum mosses with multi- 
source, multi-scale spectral libraries (i.e., plot- and species level) and 
the implications for UAV-based image classification. The research 
examined the impact of hydrological conditions on spectral properties 
and on classification performance. The results highlighted the visible 
range of the electromagnetic spectrum as the most reliable for species 
separation, due to lower signal-to-noise ratio in the near-infrared 
wavelengths. However, the hyperspectral sensors provide narrow-band 
information, which benefited the classification, as the accuracies 
increased with higher spectral detail by fusing spectral information from 
species- and plot-level. Red moss species achieved the lowest classifi
cation accuracies, probably due to neighbouring graminoids and litter 
introducing sub-pixel and mixed-pixel effects. Most of the moss species 
exhibited specific hydrological gradients, revealing a significant rela
tionship between spectral properties and water index. Interestingly, the 
classification performance improved for most of the species with higher 

Fig. 9. The impact of the water index on the classification performance as represented by the information classified “correctly” (grey box) or “incorrectly” (black 
box) for the respective Sphagnum mosses in Ilajansuo mire (left panel) and Viitasuo mire (right panel).
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water index. The study highlights the potential of using spectral libraries 
for modelling. Nevertheless, it underscores the necessity to effectively 
integrate hydrological factors as a function of spectral signatures to 
compensate for variation caused by time and site conditions.
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Kokkonen, N., Laine, A.M., Männistö, E., Korrensalo, A., Tuittila, E.-S., 2022. Two 
Mechanisms Drive Changes in Boreal Peatland Photosynthesis Following Long-Term 
Water Level Drawdown: Species Turnover and Altered Photosynthetic Capacity. 
Ecosystems 25, 1601–1618. https://doi.org/10.1007/s10021-021-00736-3.

Kolari, T.H.M., Tahvanainen, T., 2023. Inference of future bog succession trajectory from 
spatial chronosequence of changing aapa mires. Ecol. Evol. 13, e09988.

Kolari, T.H.M., Korpelainen, P., Kumpula, T., Tahvanainen, T., 2021. Accelerated 
vegetation succession but no hydrological change in a boreal fen during 20 years of 
recent climate change. Ecol. Evol. 11, 7602–7621. https://doi.org/10.1002/ 
ece3.7592.

Kolari, T.H.M., Sallinen, A., Wolff, F., Kumpula, T., Tolonen, K., Tahvanainen, T., 2022. 
Ongoing Fen-Bog Transition in a Boreal Aapa Mire Inferred from Repeated Field 
Sampling, Aerial Images, and Landsat Data. Ecosystems 25, 1166–1188. https://doi. 
org/10.1007/s10021-021-00708-7.

F. Wolff et al.                                                                                                                                                                                                                                    International Journal of Applied Earth Observation and Geoinformation 134 (2024) 104201 

11 

https://doi.org/10.1016/j.jag.2024.104201
https://doi.org/10.1016/j.jag.2024.104201
https://doi.org/10.1139/b86-057
https://doi.org/10.1139/b83-352
https://doi.org/10.1139/b83-352
https://doi.org/10.1111/1365-2745.13499
https://doi.org/10.3390/molecules26030709
https://doi.org/10.3390/molecules26030709
https://doi.org/10.1007/s11258-009-9678-0
https://doi.org/10.1007/s00442-008-0963-8
https://doi.org/10.1029/2002GL016053
https://doi.org/10.1029/2002GL016053
https://doi.org/10.1029/97JD02316
https://doi.org/10.1029/97JD02316
https://doi.org/10.1038/s41598-020-72006-6
https://doi.org/10.1016/j.jag.2008.03.003
https://doi.org/10.3390/rs6010716
https://doi.org/10.1016/j.isprsjprs.2014.01.010
https://doi.org/10.1016/j.isprsjprs.2014.01.010
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0090
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0090
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0090
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0090
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0090
https://doi.org/10.3390/rs13061178
https://doi.org/10.3390/rs9070748
https://doi.org/10.1890/09-2267.1
https://doi.org/10.1890/09-2267.1
https://doi.org/10.1016/j.rse.2018.06.041
https://doi.org/10.1007/s10021-021-00726-5
https://doi.org/10.1007/s10021-021-00726-5
https://doi.org/10.1007/s10533-010-9444-3
https://doi.org/10.1007/s10533-010-9444-3
https://doi.org/10.1002/eco.5
https://doi.org/10.1002/eco.5
https://doi.org/10.1016/j.rse.2005.05.001
https://doi.org/10.1016/j.rse.2005.05.001
https://doi.org/10.1016/j.rse.2015.01.029
https://doi.org/10.1016/j.rse.2015.01.029
https://doi.org/10.1016/j.biteb.2021.100729
https://doi.org/10.1109/tit.1968.1054102
https://doi.org/10.1111/evo.12547
https://doi.org/10.1364/AO.23.004164
https://doi.org/10.1007/s10021-021-00736-3
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0165
http://refhub.elsevier.com/S1569-8432(24)00557-0/h0165
https://doi.org/10.1002/ece3.7592
https://doi.org/10.1002/ece3.7592
https://doi.org/10.1007/s10021-021-00708-7
https://doi.org/10.1007/s10021-021-00708-7
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