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A B S T R A C T     

1. Northern peatlands are inaccessible wetlands that serve important ecosystem services to humans, 
including climate regulation by storing and sequestering carbon. Unmanned aerial vehicles or 
drones are ideal to map vegetation and associated functions in these ecosystems, but standardized 
methods to optimize efficiency (highest accuracy with lowest processing time) are lacking.  

2. We collected high-resolution drone imagery at three different altitudes (20 m, 60 m, and 120 m) of 
two Irish peatlands contrasting in pattern complexity and evaluated to what extent classification 
accuracy of vegetation patterns (microforms and plant functional types) changed using different 
flight altitudes, minimum segment size and training/testing sample size. We also analysed the 
processing time of all classifications to find the most efficient combination of parameters.  

3. Classification accuracy was consistently high (>90 %) and estimated areas of both patterns were 
uniform among all flight altitudes, independent of pattern complexity. Minimum segment size and 
training/testing sample size were also important parameters affecting the efficiency of classifica
tions. Total processing time from imagery capture to final map was 19–22 times faster with drone 
imagery at 120 m altitude than at 20 m, and seven times faster than at 60 m.  

4. Our findings suggest that flying at the maximum legal altitude of 120 m is the most efficient 
approach for landscape-scale mapping of vegetation in peatlands or other ecosystems with similar 
short vegetation structure. We conclude that flying higher is always more efficient as long as the 
pixel size of drone imagery remains under the pixel size of the pattern under investigation.   

1. Introduction 

Northern peatlands (hereafter: peatlands) provide key ecosystem 
services to humans, like drinking water provision, flood control, water 
purification, biodiversity, and climate regulation through their natural 
ability to store disproportionally large amounts of carbon. Peatlands 
represent only about 2 % of the earths’ surface (Xu et al., 2018), yet store 
between 472 and 620Gt of soil carbon (Yu et al., 2010), compromising 
more than one-third of all terrestrially stored soil carbon (Rydin & 
Jeglum, 2013), and>90 % of the global peatland carbon pool (Yu, 
2011). Many peatland functions, including carbon sequestration, are 
strongly linked to vegetation structure (species composition, biomass, 

and spatial organisation), potentially enabling upscaling of this climate 
regulating service through vegetation patterns. 

Peatland vegetation commonly exhibits characteristic spatial pat
terns in the landscape resulting from microtopographic irregularities 
called microforms, ranging from elevated moist hummocks, wet-moist 
lawns, wet depressions (hollows), to open water (Fig. 1). Because the 
plant species and plant functional types (PFTs) occurring along this 
micro-topographical gradient differ in functional traits, the distribution 
of microforms and their associated vegetation are commonly used in
dicators for peatland functioning, such as its hydrological condition and 
biogeochemical fluxes (Couwenberg et al., 2011; Lees et al., 2018; 
Schaepman-Strub et al., 2009). Yet, upscaling this information from 
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plot-level to larger areas is complicated by the scale and heterogeneity of 
these patterns (Räsänen & Virtanen, 2019; Siewert & Olofsson, 2020), 
which range from 0.01 to 1 m for PFTs to 1–10 m for microforms, falling 
below the current spatial resolution of commercial satellites. 

In recent years, remote sensing with unmanned aerial vehicles 
(UAVs) or drones has specifically gained much attention for its potential 
role in mapping and monitoring peatland vegetation and its functions. 
Drones can already capture the fine-scale heterogeneity of peatland 

microtopography and associated vegetation with unprecedented level of 
detail and will only evolve further and more rapidly in the upcoming 
years (Anderson & Gaston, 2013; Manfreda et al., 2018), making them 
an ideal bridge between field-based measurements and satellite remote 
sensing in these ecosystems. Besides, the distinct spectral differences 
between vegetation types along the micro-topographical gradient in 
combination with their relatively flat topography makes peatlands 
inherently suitable for mapping fine-scale vegetation patterns as it also 

Fig. 1. Study area maps showing the characteristic vegetation patterns in the central areas of Carrowbehy (left) and Raheenmore (right). The top images show both 
studied peatlands as well as their location in Ireland (inset). Presented in the middle pictures are the vegetation patterns of Carrowbehy and Raheenmore as seen from 
drone imagery at 20 m altitude using a DJI Mavic 2 Pro. The bottom images show the vegetation patterns of both peatlands from images taken at 3 m altitude. 
Carrowbehy has a well-developed microform gradient ranging from open water pools to high hummocks, while vegetation patterns of Raheenmore have less 
developed microforms, largely dominated by hummocks and lawns and lacking permanent pools and hollows. 
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notably improves the accuracy of drone-derived photogrammetry 
products (Czapiewski, 2022; Lovitt et al., 2017). Multiple studies have 
highlighted the great potential of drone imagery for mapping fine-scale 
peatland vegetation patterns (e.g. Beyer et al., 2019; Bhatnagar et al., 
2021; Lehmann et al., 2016; Palace et al., 2018; Räsänen et al., 2020a; 
Räsänen et al., 2019; Riihimäki et al., 2019; Steenvoorden et al., 2022). 
However, while promising, the relatively long processing times and 
limited spatial coverage of drones together with the unknown sensitivity 
of flight and image processing parameters to the complexity of spatial 
patterns currently hamper upscaling of the approach. 

In this study, we sought to improve the efficiency of drone-based 
vegetation mapping (i.e. reducing total processing time without 
compromising on accuracy) by investigating the role of several flight 
and image processing parameters (flight altitude, training/testing sam
ple size, and minimum segment size) on total processing time and ac
curacy of mapping peatland vegetation patterns. More specifically, we 
classified microforms and plant functional types in two peatlands with 
contrasting pattern complexity (heterogeneous vs homogeneous vege
tation) using drone-derived remote sensing products taken at three 
different flight altitudes. We hypothesize that: 1) classification accuracy 
of vegetation patterns increases with larger sample sizes and segment 
sizes reflecting the real patchiness of vegetation patterns, 2) classifica
tion accuracy of vegetation patterns is independent of flight altitude, 3) 
classification accuracy increases in peatlands with more heterogeneous 
vegetation patterns, and 4) classification efficiency is significantly 
higher using imagery at 120 m altitude than imagery at lower altitudes. 

2. Materials & methods 

2.1. Study area 

We selected two Irish ombrotrophic peatlands based on their con
trasting levels of pattern complexity: well-developed heterogeneous 
patterns in Carrowbehy and less developed and more homogeneous 
patterns in Raheenmore (Fig. 1). Carrowbehy is a western raised bog 
complex of 343 ha that exhibits a very clear hummock-lawn-hollow 
pattern with occasional open water pools in the central and hydrologi
cally most intact areas of the peatland (called the central ecotope; 
Fig. 1). While Carrowbehy has experienced moderate domestic peat 
cutting in its recent history, peat cutting has ceased here since 2003 
(Fernandez et al., 2014), and it is currently a prime example of 
remaining ecohydrologically intact raised bogs in Ireland. Raheenmore 
is an eastern raised bog of 210 ha situated in the Irish Midlands and is 
one of the last surviving raised bogs in the eastern part of the country. In 
contrast with Carrowbehy, the central ecotope of Raheenmore has a less 
developed microtopography, lacking permanent pools and extensive 
hollows. Rather, the vegetation patterns of Raheenmore are more ho
mogeneous and are largely dominated by hummocks interspersed with 
lawns filled with graminoids and some peat mosses (Fig. 1). Both 
peatlands are part of Irelands’ Special Areas of Conservation (SAC’s) 
network under the EU Habitats Directive (92/43/EE; Mackin et al., 
2017; National Parks and Wildlife Service, 2018). 

2.2. Drone imagery capture 

We collected drone images of Carrowbehy and Raheenmore on 14 
and 21 September 2021 respectively using a DJI Mavic 2 Pro drone with 
Hasselblad L1D-20c red-greenblue (RGB) colour sensor camera. We used 
no intrinsic camera parameters, except for the default camera calibra
tion present in the EXIF information, which is limited to focal length 
(10.3 mm). All camera parameters were determined or optimized during 
the photogrammetric processing. We used DJI Ground Station Pro to 
design automated flights of 1 ha (or more depending on altitude) at an 
altitude of 20 m, 60 m, and 120 m above ground level for each peatland 
and a forward/side image overlap of 80/80, extending flight lines well 
beyond our region of interest to increase the number of overlapping 

images at the edges of our plot for use during photogrammetry. We 
decided upon using these altitudes because 120 m is the maximum legal 
flight altitude using consumer grade drones, 60 m is half of the 
maximum legal flight altitude and half the resolution of imagery at 120 
m, and 20 m is an extremely low flight altitude reaching sub-centimetre 
spatial resolution. To allow for georeferencing of the stitched drone 
images at each flight altitude, we distributed four 30x40cm checker
board ground control points around the edges of each 1 ha plot and 
measured their position using a Topcon HiPer HR real-time kinematic 
(RTK) and TopNET + global navigation satellite system (GNSS) with 
1–3 cm accuracy. All flights were conducted within one hour of solar 
noon under fully cloudy conditions to minimize the effect of shade, 
where wind speeds varied between low to moderate wind speeds up to 
19 km/h. 

2.3. Pre-processing drone imagery 

After all drone flights were conducted, we pre-processed all drone- 
derived imagery products before classifying vegetation patterns within 
each orthomosaic. First, we used ortho-mapping software in ArcGIS Pro 
2.8.2 to colour balance the drone images and produce a stitched RGB 
orthomosaic of each flight, as well as to create a high-resolution Digital 
Terrain Model (DTM) with 5× pixel size of each orthomosaic (default 
setting) using the photogrammetric data contained within each indi
vidual drone image (Table S1). More specifically, we created the DTM 
using extended terrain matching, which is a feature-based stereo 
matching technique for generating high density point clouds. Hereafter, 
we georeferenced each orthomosaic using the ground control points and 
clipped the georeferenced orthomosaics to a rectangular polygon of 1 ha 
and 0.56 ha for Carrowbehy and Raheenmore respectively, because the 
orthomosaic of Raheenmore at 20 m altitude was only 75 × 75m. 

Second, we grouped all pixels within each orthomosaic into segments 
(objects) using a mean-shift clustering algorithm based on similarity in 
spectral and spatial characteristics of the raster image. To calibrate the 
optimal minimum segment size for classification of microforms and 
plant functional types (PFTs) in our study, we carried out this segmen
tation fourteen times for both patterns in both peatlands (total of 60 
segmentations) using the imagery at 120 m altitude (Table 1). We 
started with a minimum segment size of 0.01 m2 ground area (0.1 × 0.1 
m) and increased minimum segment size by 0.05 × 0.05 m after every 
iteration of the classification algorithm up to a minimum segment size of 
0.5625 m2 (0.75 × 0.75 m). We only performed this analysis at 120 m 
because the ground area is independent of flight altitude, and we argue 
that repeated segmentations at lower altitudes would therefore likely 
lead to very similar results. 

Third, we detrended each DTM by fitting a second-order polynomial 
function through the elevation points in the DTM, and subsequently 
subtracted the DTM from the fitted trend function. This detrended DTM 
represents relative micro-topographical differences within the ortho
mosaic more realistically and was needed because the DTM of each 
orthomosaic was slightly sloping downwards from the centre to the 
margin of the peatlands. 

Lastly, we calculated several RGB-derived vegetation colour indices 
as additional predictor variables in the classification of both microforms 
and PFTs to further emphasise spectral differences between vegetation 
classes. Ultimately, we employed a total of 25 predictor variables in the 
classification of both microforms and PFTs, consisting of the mean and 
standard deviation of RGB values, mean of the Hue-Saturation-Value 
colour model, ten vegetation colour indices combining two or more 
RGB bands, elevation (minimum, maximum, and mean) and three shape 
metrics (pixel count, rectangularity, and compactness), computed 
separately for all segments in each orthomosaic (Table S2). 

2.4. Ground truth data 

We divided vegetation patterns in our study into microforms and 
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PFTs because they are two common conceptualizations used in mapping 
vegetation patterns and functions in peatlands. Hereafter, we further 
subdivided each vegetation pattern into classes based on drone-visible 
indicator species (or the lack thereof) and their associated position 
along the micro-topographical gradient as seen from the newly devel
oped orthomosaics. Microforms were subdivided into three classes: 1) 
hollow, 2) lawn, and 3) hummock (Table S3), while PFTs were sub
divided into five classes: 1) peat moss, 2) shrub, 3) graminoid, 4) lichen, 
and 5) water/bare peat (Table S3). 

For classification of microforms, we initially created 500 randomly 
placed points within each orthomosaic for Carrowbehy and used the 
highest resolution orthomosaic at 20 m altitude as a reference dataset to 
create training/testing samples for use in classification. The geograph
ical locations of these point measurements were then linked to the 
values of the predictor variables within the computed segment by which 
they were contained to develop the full training/testing dataset. We 
increased total training/testing sample size for microforms to 625 points 
(375 hummock, 150 lawn, and 100 hollow) by randomly adding new 
points until we reached a rounded-out approximation of area- 
proportional allocation of training/testing samples for Carrowbehy. 
For classification of PFTs, we instead adopted a targeted sampling 
approach, where we placed 100 points per PFT per orthomosaic for 
Carrowbehy (500 total; five PFTs) to prevent underrepresentation of 
uncommon PFTs in each orthomosaic. 

To evaluate the effect of training/testing sample size on classification 
accuracy, we performed a sensitivity analysis on the training/testing 
samples during classification of microforms for Carrowbehy at 120 m 
altitude where we systematically reduced the proportion of total 
training/testing samples from 100 % to 10 % with steps of 10 %. The 
results of this sensitivity analysis were then used to adjust the total 
training/testing sample size for classification of microforms for 
Raheenmore to a reduced sample size that still had consistent accuracy 
compared to the full sample size (see also 3.1.2; Table 1). For PFTs we 
used the same sensitivity analysis as for microforms, after which we also 
adjusted the total training/testing sample used for classification of PFTs 
for Raheenmore to the reduced sample size where classification accu
racy remained consistent (see also 3.1). 

2.5. Vegetation pattern classification 

We classified vegetation classes of each pattern based on selected 
segments using the training/testing samples within each orthomosaic in 
combination with the ensemble classifier Random Forest (Breiman, 
2001) using Python’s Scikit-learn module (Pedregosa et al., 2011) with 
the 25 predictor variables as input. We used Random Forest as it is a 
robust and interpretable machine learning algorithm with little demand 
on computational power (Belgiu & Drăgu, 2016). To fit the Random 
Forest models, we first removed redundant predictor variables from the 
whole training/testing sample of each orthomosaic using the Boruta 
feature-selection algorithm (Kursa & Rudnicki, 2010). We then split the 
training/testing samples for each orthomosaic using stratified K-fold 
cross-validation (CV) with a ratio of 80:20 for training versus testing 
(analogous to 5-folds) because it minimized variance of CV model ac
curacy in our study as compared to repeated K-Fold cross-validation or a 
larger number of folds (Jiang & Wang, 2017). We kept hyperparameters 
of the Random Forest classifier at default values as accuracy improve
ments through hyperparameter tuning were negligible (less than1 %). 
Classification accuracy per vegetation class as well as final classification 
accuracy of each orthomosaic were computed by averaging precision, 
recall, and F1-score over all folds in the Random Forest model using the 
testing samples. An average value of 1 then indicates a perfect predic
tion, while any value in between 0 and 1 (or 0–100 %) indicates the 
probability that a testing sample is correctly classified. We classified all 
segments within each orthomosaic by taking the most frequently clas
sified vegetation class for each segment over all folds. Lastly, we 
retrieved an overall ranking of variable importance for each classified 
image by computing the Gini importance, which we used as it is a 
commonly used measure for variable importance in peatland studies 
(Behnamian et al., 2017; Millard & Richardson, 2015). Because variable 
importance rankings for each plot varied between Random Forest model 
runs (i.e. folds), we averaged Gini importance over all folds to receive 
more stable mean importance values for each classification (Behnamian 
et al., 2017). In cases where a predictor variable was removed through 
Boruta, variable importance was set to 0. 

Table 1 
overview of the imagery that was used to evaluate each hypothesis of the study. First, we used the imagery of both Carrowbehy (heterogeneous) and Raheenmore 
(homogeneous) at 120 m altitude to calibrate the optimal minimum segment size for the study. We then used the results of the sensitivity analysis of training/testing 
sample size for Carrowbehy at 120 m altitude to adjust the training/testing sample size for Raheenmore. Afterwards, we applied these calibrated image processing 
parameters to all subsequent classifications for both peatlands. A check mark (green) is used to indicate that a dataset was used during analysis for evaluating a specific 
hypothesis, whereas a cross (red) indicates that a dataset was not used in analysis for evaluating a specific hypothesis.  
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2.6. Stratified estimation of mapped class areas 

After each orthomosaic was classified, we used the confusion matrix 
and mapped class area (m2) from the classification of each orthomosaic 
to estimate accuracy and quantify uncertainty of the mapped class areas 
using stratified estimation (Olofsson et al., 2013, 2014). More specif
ically, we used the ratio between true positives, false positives, true 
negatives, and false negatives for each class within the confusion matrix 
in combination with the mapped area of each class to compute their 
error-adjusted area estimates and confidence intervals as well as recal
culating the accuracy measures and confidence intervals hereof using 
the stratified area estimates. Stratified estimation represents the un
certainty in mapped areas due to misclassifications more realistically, 
whereas solely using sample counts from the confusion matrix as means 
of assessing classification accuracy can severely underestimate or 
overestimate the true accuracy and area of vegetation classes. This is 
crucial, especially since variability in mapped class area estimates 
resulting from misclassifications could have cascading effects when for 
instance developing models that link vegetation patterns to functions 
such as carbon fluxes (Olofsson et al., 2013). Stratified estimation is a 

transparent and statistically robust approach to assess accuracy and 
estimate mapped areas of vegetation classes, and therefore allows for 
more effective use of drone imagery products in later analyses. Besides, 
by taking this uncertainty into account, it allowed for better comparison 
of the consistency between mapped areas of each vegetation class at the 
different altitudes used in this study. A workflow of our full research 
methodology can be seen in Figure S1. 

3. Results 

3.1. Sensitivity analyses 

3.1.1. Optimal minimum segment size 
Before classifying microforms and plant functional types (PFTs) at all 

three flight altitudes, we first classified both vegetation patterns at 120 
m altitude at both peatlands using a total of fourteen different minimum 
segment sizes ranging from 0.1 m to 0.75 m to determine the optimal 
minimum segment size for classification of each vegetation pattern. This 
analysis showed that classification accuracy is highly dependent on the 
minimum size of the segments within an orthomosaic, and that 

Fig. 2. relationship between average classification accuracy and processing time of microforms (left) and plant functional types (right) for heterogeneous Car
rowbehy (top) and homogenous Raheenmore (bottom). The black line represents the average classification accuracy over five folds using stratified K-fold cross- 
validation (black), with the blue shaded area indicating the standard deviation. The red line indicates the classification time (i.e. time total time for segmenta
tion, training of Random Forest models, and classification of orthomosaic). The dashed vertical line indicates the minimum segment size of 0.25 m. (For inter
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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minimum segment size also strongly influences classification time. 
Overall, classification accuracy and variance were comparable for both 
peatlands and for both vegetation patterns until a minimum segment 
size of 0.25 m (Fig. 2; Table S4–S7), after which accuracy started 
dropping and variance started increasing notably up until a minimum 
segment size of 0.75 m. In addition, reductions in processing time were 
largest from 0.1 to 0.25 m, whereas reductions in processing time from 
0.25 to 0.75 m were only twelve seconds on average for all four classi
fications (Table S4–Table S7; Fig. 2). These results highlighted that a 
minimum segment size of 0.25 m is most efficient independent of the 
studied vegetation pattern (microform or PFT) or pattern complexity, 
and we therefore decided to use a minimum segment size of 0.25 m for 
all further analyses. 

3.2. Training/testing sample size 

After determining an optimal minimum segment size of 0.25 m, we 
performed our sensitivity analysis on the training/testing sample size for 
Carrowbehy. For microforms, the sensitivity analysis highlighted that 
classification accuracy and variance of CV model accuracy were 
consistent until 40 % of the total training/testing sample size remained 
(Table S8; Fig. 3). The sensitivity analysis for PFTs in Carrowbehy 
showed that classification accuracy and variance of CV model accuracy 
were consistent until 50 % of the total training/testing sample size 
remained (Table S9; Fig. 3). These results underscored that total 
training/testing sample sizes of 625 and 500 for microforms and PFTs 
respectively were more than adequate to reach consistent classification 
accuracies for Carrowbehy. Consequently, we used reduced total 
training/testing sample sizes as ground truthing data during classifica
tion of microforms and PFTs for Raheenmore. Here, we created only 250 
random points (40 % of 625 points) of microforms within each ortho
mosaic and rounded out these points to a total training/testing sample 
size of 275 points (200 hummock and 75 lawn points). For PFTs, we 
placed only 50 points per PFT (200 in total; four PFTs) per orthomosaic 
in Raheenmore as training/testing samples for use in classification. 

3.3. Vegetation pattern classifications 

3.3.1. Microform classifications 
Classified images of microforms showed average accuracies of well 

over 90 % at all flight altitudes, where the lowest accuracy was 95.2 % 
(Carrowbehy at 60 m) and the highest accuracy was 97.8 % (Raheen
more at 20 m). Besides, classification reports for each classified ortho
mosaic highlighted that accuracies per microform were also generally 
very high, with accuracies reaching at least 90 % in all cases (Table S10). 
Misclassifications in Carrowbehy most often occurred between lawn and 
hummocks, but occasionally also between hummock and hollow 
(Table S15), likely explained by occasional similarities in spectral 
reflectance between species of different microforms (see also discussion 
4.1). In Raheenmore, only hummock and lawn were present, which were 
therefore always misclassified as each other. Analysis of variable 
importance emphasized that both vegetation colour indices and eleva
tion predictor variable categories were always important in classifica
tion of microforms for both peatlands, whereas RGB values and shape 
metrics were hardly ever important or even included the Random Forest 
models after feature selection with Boruta (Figure S3). The high classi
fication accuracies of all microforms in both peatlands show that the 
detectability and mappability of microforms in our study was extremely 
good independent of pattern complexity. 

Mapped class areas for each classification emphasized that hummock 
was by far the largest class at all three altitudes for both peatlands 
(Fig. 4; Fig. 5), followed by lawn and hollow, which both occurred 
approximately in equal amounts in all peatlands (Fig. 4). After stratified 
estimation, error-adjusted areas for each microform changed slightly in 
each peatland (Fig. 4; Table S12), but the substantially overlapping 
confidence intervals for estimated areas of all microforms underline that 
these values are not significantly influenced by flight altitude. These 
findings signify that carrying out drone flights below 120 m altitude 
(2.7 cm pixel size in our study) provided no benefit to classification 
accuracy of microforms. 

3.4. Plant functional type classifications 

Like microforms, classified images of plant functional types (PFTs) 
also showed average accuracies of well over 90 % at all flight altitudes. 

Fig. 3. relationship between total sample size (and fraction of total sample size) on the accuracy of classifications of microforms (left) and plant functional types 
(right) for Carrowbehy using a minimum segment size of 0.25 m. The black line represents average classification accuracy over five folds using stratified K-fold cross- 
validation, with the blue shaded area indicating the standard deviation. The red line indicates total sample size, and the vertical dotted line highlights the minimum 
fraction for consistent classification results (40 % for microforms and 50 % for plant functional types). (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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Here, lowest classification accuracy was 92.5 (Raheenmore at 20 m) and 
the highest accuracy was 97.5 (Raheenmore at 120 m). Classification 
reports for each classified orthomosaic showed that accuracies per PFT 
were also generally very high (Table S11), with accuracies reaching at 
least 90 % for all classes but graminoid at 20 m for both Carrowbehy 
(87.4 %) and Raheenmore (84.6 %), highlighting that graminoid was 
most difficult to classify at low flight altitudes. Misclassifications of PFTs 
in both Carrowbehy and Raheenmore most often occurred between 
graminoid and shrub and between graminoid and lichen (Table S15), 
likely also explained by occasional similarities in spectral reflectance 
between classes (see also discussion 4.1). Variable importance for clas
sifications of PFTs differed strongly when compared to those of classi
fications of microforms in both peatlands. Here, mean RGB values, Hue- 
Saturation-Value colour model values and vegetation colour indices 
were the most important predictor variable categories, whereas eleva
tion was hardly ever of importance in the Random Forest models 
(Figure S3). This is likely caused because the same PFTs can occur at 
multiple locations along the micro-topographical gradient as well as in 
multiple microforms. Based on the consistently high classification re
sults of PFTs for both peatlands, we argue that pattern complexity has no 
effect on the detectability of PFTs in our study. 

Mapped class areas for each classification highlighted that shrub and 
graminoid were the most dominant PFTs in each peatland, followed by 
peat moss, lichen, and water/bare peat (occurred in Carrowbehy only; 
Table S13; Fig. 4; Fig. 5). After stratified estimation, error-adjusted areas 
for each PFT changed slightly in each peatland. The confidence intervals 
show that ranges in error-adjusted areas for shrub and graminoid are 
highest in both locations at 20 m because of their reduced classification 
accuracy, and that ranges in error-adjusted areas are also large for lichen 

in Raheenmore because lichen was sometimes classified as graminoid, 
which occurred in large proportions. Nevertheless, the confidence in
tervals for estimated areas of PFT classes for all altitudes still overlap 
substantially, highlighting that these estimated areas are also consistent 
at all three altitudes for both peatlands (Table S13; Fig. 4). These results 
also signify that drone flights below 120 m altitude provide no benefit to 
classification accuracy of PFTs, and that classification accuracy even 
improves at higher altitudes instead because of reduced mis
classifications between shrub and graminoid. 

3.5. Classification efficiency 

To analyse the efficiency of mapping microforms and plant func
tional types in our study using drone imagery, we summarized total 
image capture and processing time for the imagery at each altitude using 
80/80 forward/side overlap and a minimum segment size of 0.25 m 
(Fig. 6; Table S14). Here, we assumed that classification accuracy of 
both vegetation patterns was consistent at all three altitudes for both 
peatlands based on the largely overlapping confidence intervals of 
estimated areas for each class within a vegetation pattern. Total pro
cessing time from imagery capture to final map was approximately 
seven times faster at 120 m altitude than at 60 m and between 19 and 22 
times faster than at 20 m for both vegetation patterns in both peatlands 
(Fig. 6). A considerable amount of this processing time at lower altitudes 
was spent capturing and pre-processing the drone imagery (Fig. 6; 
Table S14), which is most likely caused by the large number of pixels per 
area in 20 m imagery as opposed to imagery at 60 m and 120 m 
(Table S1). We therefore argue that aside from other flight and pro
cessing parameters, flying at the maximum legal flight altitude of 120 m 

Fig. 4. overview of estimated areas (m2) with confidence intervals for classification of microforms (left) and plant functional types (right) at all three altitudes (20 m, 
60 m, and 120 m) for both studied peatlands with varying pattern complexity: Carrowbehy (top, heterogeneous) and Raheenmore (bottom, homogeneous). Bars for 
each vegetation class of each pattern represent estimated areas at 20 m (left), 60 m (center), and 120 m (right). 
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is by far the most efficient approach for mapping peatland vegetation 
patterns, at least in our study. 

4. Discussion 

4.1. Consistency of peatland vegetation pattern classifications 

We found that classification accuracy of vegetation was not affected 
by flight altitude up to 120 m, pattern complexity or spatial scale of the 
pattern (microforms vs plant functional type). We attribute the high 
consistency of the classification accuracy to three main factors: 1) the 
high spectral separability of peatland vegetation, 2) the role of topo
graphical data on class separability, and 3) optimization of spatial res
olution and segmentation scale. While drones may be particularly suited 
for landscape-scale vegetation mapping of open, tree-less peatlands, the 
insensitivity of classification results to pattern complexity suggests that 
our results are not limited to these ecosystems. Instead, we think drones 
can as efficiently be used for mapping vegetation in other ecosystems 
with similar short vegetation structure, such as moorlands, heathlands, 
or tundra, albeit by having slightly different data and resolution re
quirements than peatlands. 

4.2. Spectral separability 

The environmental gradients associated with microtopography in 
peatlands strongly determine their species composition. Microforms 

represent a distinct set of species and PFTs that are adapted to the 
biogeochemical and hydrological conditions of that microform, which 
act as filters on plant traits and associated spectral properties (Schaep
man-Strub et al., 2009). As a result, the spectral reflectance of the PFTs 
dominating these species assemblages often differ markedly among 
another (see also Fig. 1; Table S3). The high spectral separability of 
vegetation classes at the time of our study may also explain why clas
sification accuracy was rather insensitive to training/testing sample 
sizes, which was against our hypothesis. As spectral separability is co- 
determined by plant phenology (e.g. Palace et al., 2018; Räsänen 
et al., 2020a), our results may be linked to the end-of-season image 
capture. 

4.3. Topographical data 

In cases where different microforms contained PFTs with similar 
spectral signatures, including topographical data in the classification 
improved separability between vegetation classes. Indeed, the elevation 
predictor variables were always included after feature selection with 
Boruta, and improved classification accuracy of microforms in both 
peatlands (Figure S3). These results align with other recent studies in 
peatlands, who have shown that combining spectral data with topo
graphical data can improve the accuracy of classification in vegetation 
studies quite substantially (e.g. Harris & Baird, 2019; Moore et al., 2019; 
Räsänen et al. (2020a,b)). 

Fig. 5. maps showing the classification results at 120 m altitude for both studied peatlands with varying pattern complexity: Carrowbehy (top, heterogeneous) and 
Raheenmore (bottom, homogeneous). Represented for each peatland are the orthomosaic at 120 m altitude (left), classified map of microforms at 120 m altitude 
(centre), and classified map of plant functional types at 120 m altitude (right). 
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4.4. Spatial resolution and segmentation scale 

The results of our study show that classification success depended 
strongly on evaluation of both the spatial resolution of input imagery 
and the choice of segmentation parameters, which is in line with other 
peatland mapping studies (e.g. Räsänen & Virtanen, 2019; Virtanen & 
Ek, 2014). Because the spatial resolution of our drone imagery already 
significantly surpassed the minimum size of our investigated vegetation 
patterns even at 120 m altitude (2.7 cm in our study), this led to a trade- 
off during segmentation. Here, higher segment sizes would allow for 
mapping of larger features but may miss smaller and clustered patches, 
whereas lower segment sizes can detect small and clustered features but 
may also lead to noise during classification by introducing heterogeneity 
within vegetation classes (Räsänen & Virtanen, 2019), for instance by 
attributing different plant parts such as stems, leaves, flowers and even 
canopy shadow to different segments. In our study, higher spatial res
olutions and lower segment sizes were not always better in dis
tinguishing between vegetation classes, whereas efficiency was 
improved notably once spatial resolutions and segment sizes reflected 
the real scale of the vegetation patterns under investigation. Our 
sensitivity analysis showed that microforms and PFTs had an optimal 
minimum segment size of about 0.25 m, which is likely low enough to 
identify smaller patches but not so small that vegetation classes show 
notable internal heterogeneity. 

4.5. Improving mapping of fine-scale vegetation patterns 

4.5.1. Choosing scales of interest 
While we found a minimum segment size of 0.25 m to optimize 

classification accuracy in this study, this is by no means the gold stan
dard for the segmentation scale of microforms and PFTs because the size 
and shape of patterns can vary between vegetation classes within a 
peatland, as well between vegetation patterns among peatlands. For 
instance, while hummocks are generally large and compact, lawns and 
hollows are often smaller and more elongated. Besides, whereas hum
mocks are often compromised by multiple PFTs, lawns can be inhabited 

homogeneously by peat mosses. Consequently, the difficulty of seg
mentation is that there is often no way to know which segmentation 
approach produces the best classification results until the classification 
is carried out. For this reason, we argue that one should first investigate 
the size and shape at which ecologically meaningful vegetation patterns 
exist in their study area, and then compare the effect of various relevant 
segmentation scales on classification efficiency to choose the most 
optimal segmentation scale for that site or goal. Here, one could also 
make use of multi-resolution segmentation where multiple segmenta
tion scales are used for delineation of patches of different vegetation 
classes (Blaschke et al., 2014; Dronova, 2015), although this is more 
difficult to implement in a classification algorithm. 

4.6. Training/testing sample size and allocation 

The results of our classifications showed consistent accuracy metrics 
even with only 40–50 % of the original training/testing sample size, 
illustrating that defining an ‘optimal’ training/testing sample depends 
on a specific research or accuracy objective. For instance, to improve 
classification accuracy of Random Forest models, training/testing sam
ple sizes should be as large as possible, and randomly distributed or at 
least created in a manner that allows for approximate area-proportional 
allocation of samples (Colditz, 2015; Millard & Richardson, 2015). 
However, to achieve acceptable standard errors for estimated accuracy 
metrics and area estimates, Olofsson et al. (2014) recommend that one 
should shift the sampling strategy slightly away from area-proportional 
allocation by increasing the sample size of uncommon classes (but not 
until equal allocation is reached). While we did not actively test the 
effect of sample size allocation on estimated accuracy metrics, we did 
see that variance of area estimates decreased notably in our study when 
total training/testing sample size was increased. Consequently, if the 
goal is to receive an accurate classification, ‘as large as possible’ means 
increasing a randomly distributed sample size up until a certain point 
where additional samples do not further improve accuracy. If the goal is 
instead to reduce standard errors of accuracy and area estimates of 
mapped vegetation classes, one should systematically evaluate the 

Fig. 6. stacked bar plots highlighting the total processing time for different processes carried out during classification of microforms and plant functional types at 
three altitudes (20 m, 60 m, and 120 m) in two peatlands (Carrowbehy and Raheenmore) with contrasting complexity. Because processing times of different patterns 
within a peatland were near equal, the presented processing times are averaged over the classifications of microforms and plant functional types for that specific 
peatland and altitude. Processing times are presented in chronological order from image capture to final map. Bars with processes that compromised less than 300 s 
are not labelled for visual clarity. 
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potential outcome of a specific training/testing sample size and sample 
allocation on their values until a desired confidence interval is reached. 
In either case, the decision is based on the specific research purpose or 
accuracy objective. 

4.7. Less is more 

Our results suggest that classifications remain consistent as long as 
the pixel size of drone imagery remains under the pixel size of the 
investigated pattern. Consequently, efficiency of mapping fine-scale 
vegetation patterns can likely be improved further by using drones 
with lower resolution sensors because these reduce overall flight time 
per area, total image capture, and processing time using otherwise 
identical flight parameters. Besides, several recent drone studies have 
successfully mapped vegetation patterns in northern peatlands and 
tundra ecosystems using lower resolution imagery between 3 and 16 cm 
(Beyer et al., 2019; Palace et al., 2018; Räsänen et al., 2019; Räsänen & 
Virtanen, 2019; Siewert & Olofsson, 2020), highlighting the possibilities 
of further reducing spatial resolution without compromising on accu
racy. Lower spatial resolution imagery could potentially also be ob
tained by flying at higher altitudes, but current legislation in most 
countries prohibits drone flying above 120 m altitude. 

4.8. Linking patterns to functions 

Because peatland vegetation patterns play such a key role in the 
carbon balance of peatlands, a next step in drone imagery analyses will 
be to link vegetation patterns to carbon related functions. Several 
studies have already started such analyses for carbon fluxes (e.g. Kelly 
et al., 2021; Lees et al., 2018; Lehmann et al., 2016; Moore et al., 2019), 
belowground C stocks (Lopatin et al., 2019), biomass (e.g. Cunliffe et al., 
2020; Fraser et al., 2016; Räsänen et al., 2020b), and groundwater tables 
(Kalacska et al., 2018; Rahman et al., 2017). However, the major chal
lenge for mapping vegetation patterns and functions in peatlands as well 
as other ecosystems with similar short vegetation structure is that drones 
will most likely never compete with the spatial coverage of commercial 
satellite imagery because of both technological and legislative limita
tions. Besides, these ecosystems are often large, continuous, isolated, 
and inaccessible. Consequently, nested drone-satellite approaches – 
where fine-scale drone imagery products are used to train larger-scale 
commercial satellite imagery (Bhatnagar et al., 2021; Riihimäki et al., 
2019) – will likely become a necessity to be able to accurately and 
realistically upscale the fine-scale heterogeneous nature of peatland 
vegetation and their functions to the large scale at which they occur in 
the landscape. We think this factor is crucial and in need for further 
assessment in order to develop methods that can map and quantify 
peatland functions at regional and global scale. This will help us to 
better understand the vulnerability of global peatland carbon to pre
dicted changes in climate and land-use in the 21st century. 

5. Conclusion 

The results of our study highlight the consistency of mapping fine- 
scale peatland vegetation patterns across multiple legal flying alti
tudes and in peatlands with both high and low pattern complexity. Based 
on these findings, we conclude that using otherwise identical flight and 
image processing parameters, flying at the maximum legal flight altitude 
of 120 m is always significantly more efficient than flying at lower al
titudes as long as the pixel size of drone imagery remains under the pixel 
size of the pattern under investigation. When flying at 120 m altitude, 
drones are extremely well-suited for landscape-scale mapping of fine- 
scale vegetation patterns because of the flexibility and ease by which 
they can accurately and efficiently collect and process very high- 
resolution spectral and topographical data into vegetation pattern 
maps over relatively large areas. However, given the spatial character
istics of peatlands worldwide, we urge development of nested drone- 

satellite approaches to allow for further upscaling of vegetation pat
terns and their functions to the regional and global scale. 

CRediT authorship contribution statement 

Jasper Steenvoorden: Conceptualization, Methodology, Software, 
Formal analysis, Writing – original draft, Visualization. Harm Bartho
lomeus: Methodology, Writing – review & editing, Validation. Juul 
Limpens: Conceptualization, Methodology, Supervision, Writing – re
view & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

All data will be uploaded to the open source data repository DANS 
upon publication. 

Acknowledgements 

We thank the Irish National Parks and Wildlife Service (NPWS) for 
providing access to the studied peatlands, Matthijs Schouten for infor
mation and knowledge on the distribution and characteristics of fine- 
scale vegetation patterns in Irish peatlands, and Rúna Magnusson and 
Daniel Kooij for valuable discussions regarding the methodology of the 
study. 

Appendix A. Supplementary material 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.jag.2023.103220. 

References 

Anderson, K., Gaston, K.J., 2013. Lightweight unmanned aerial vehicles will 
revolutionize spatial ecology. Front. Ecol. Environ. 11 (3) https://doi.org/10.1890/ 
120150. 

Behnamian, A., Millard, K., Banks, S.N., White, L., Richardson, M., Pasher, J., 2017. 
A Systematic Approach for Variable Selection with Random Forests: Achieving 
Stable Variable Importance Values. IEEE Geosci. Remote Sens. Lett. 14 (11) https:// 
doi.org/10.1109/LGRS.2017.2745049. 
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Riihimäki, H., Luoto, M., Heiskanen, J., 2019. Estimating fractional cover of tundra 
vegetation at multiple scales using unmanned aerial systems and optical satellite 
data. Rem. Sens. Environ. 224 https://doi.org/10.1016/j.rse.2019.01.030. 

Rydin, H., & Jeglum, J. K. (2013). The Biology of Peatlands. Oxford University Press. 
https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001. 

Schaepman-Strub, G., Limpens, J., Menken, M., Bartholomeus, H.M., Schaepman, M.E., 
2009. Towards spatial assessment of carbon sequestration in peatlands: Spectroscopy 
based estimation of fractional cover of three plant functional types. Biogeosciences 6 
(2). https://doi.org/10.5194/bg-6-275-2009. 

Siewert, M.B., Olofsson, J., 2020. Scale-dependency of Arctic ecosystem properties 
revealed by UAV. Environ. Res. Lett. 15 (9) https://doi.org/10.1088/1748-9326/ 
aba20b. 

Steenvoorden, J., Limpens, J., Crowley, W., Schouten, M.G.C., 2022. There and back 
again: Forty years of change in vegetation patterns in Irish peatlands. Ecol. Ind. 145, 
109731 https://doi.org/10.1016/j.ecolind.2022.109731. 

Virtanen, T., Ek, M., 2014. The fragmented nature of tundra landscape. Int. J. Appl. Earth 
Obs. Geoinf. 27 (PARTA) https://doi.org/10.1016/j.jag.2013.05.010. 

Xu, J., Morris, P.J., Liu, J., Holden, J., 2018. PEATMAP: Refining estimates of global 
peatland distribution based on a meta-analysis. Catena 160, 134–140. https://doi. 
org/10.1016/j.catena.2017.09.010. 

Yu, Z.C., 2011. Holocene carbon flux histories of the world’s peatlands. The Holocene 21 
(5), 761–774. https://doi.org/10.1177/0959683610386982. 

Yu, Z.C., Loisel, J., Brosseau, D.P., Beilman, D.W., Hunt, S.J., 2010. Global peatland 
dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37 (13) https://doi. 
org/10.1029/2010GL043584. 

J. Steenvoorden et al.                                                                                                                                                                                                                          

https://doi.org/10.3389/feart.2022.834923
https://doi.org/10.3389/feart.2022.834923
https://doi.org/10.3390/rs70506380
https://www.npws.ie/sites/default/files/publications/pdf/IWM81_0.pdf
https://www.npws.ie/sites/default/files/publications/pdf/IWM81_0.pdf
https://doi.org/10.1139/as-2016-0008
https://doi.org/10.1139/as-2016-0008
https://doi.org/10.1007/s10021-018-0321-6
https://doi.org/10.1007/s10021-018-0321-6
https://doi.org/10.1016/j.patcog.2017.03.025
https://doi.org/10.3390/rs10050687
https://doi.org/10.1016/j.agrformet.2021.108330
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1016/j.scitotenv.2017.09.103
https://doi.org/10.3390/rs8030173
https://doi.org/10.1016/j.rse.2019.111217
https://doi.org/10.1016/j.rse.2019.111217
https://doi.org/10.3390/rs9070715
https://doi.org/10.3390/rs10040641
https://doi.org/10.3390/rs10040641
https://doi.org/10.3390/rs70708489
https://doi.org/10.5194/bg-16-3491-2019
https://doi.org/10.5194/bg-16-3491-2019
https://www.npws.ie/sites/default/files/general/national-raised-bog-sac-management-plan-en.pdf
https://www.npws.ie/sites/default/files/general/national-raised-bog-sac-management-plan-en.pdf
https://doi.org/10.1016/j.rse.2014.02.015
https://doi.org/10.1016/j.rse.2012.10.031
https://doi.org/10.1016/j.rse.2012.10.031
https://doi.org/10.3390/rs10091498
https://doi.org/10.3390/rs10091498
http://refhub.elsevier.com/S1569-8432(23)00042-0/h0160
http://refhub.elsevier.com/S1569-8432(23)00042-0/h0160
http://refhub.elsevier.com/S1569-8432(23)00042-0/h0160
http://refhub.elsevier.com/S1569-8432(23)00042-0/h0160
https://doi.org/10.3390/rs9101057
https://doi.org/10.1002/rse2.140
https://doi.org/10.1080/15481603.2020.1829377
https://doi.org/10.1080/15481603.2020.1829377
https://doi.org/10.1111/jvs.12769
https://doi.org/10.1016/j.rse.2019.05.026
https://doi.org/10.1016/j.rse.2019.05.026
https://doi.org/10.1016/j.rse.2019.01.030
https://doi.org/10.1093/acprof:osobl/9780199602995.001.0001
https://doi.org/10.5194/bg-6-275-2009
https://doi.org/10.1088/1748-9326/aba20b
https://doi.org/10.1088/1748-9326/aba20b
https://doi.org/10.1016/j.ecolind.2022.109731
https://doi.org/10.1016/j.jag.2013.05.010
https://doi.org/10.1016/j.catena.2017.09.010
https://doi.org/10.1016/j.catena.2017.09.010
https://doi.org/10.1177/0959683610386982
https://doi.org/10.1029/2010GL043584
https://doi.org/10.1029/2010GL043584

	Less is more: Optimizing vegetation mapping in peatlands using unmanned aerial vehicles (UAVs)
	1 Introduction
	2 Materials & methods
	2.1 Study area
	2.2 Drone imagery capture
	2.3 Pre-processing drone imagery
	2.4 Ground truth data
	2.5 Vegetation pattern classification
	2.6 Stratified estimation of mapped class areas

	3 Results
	3.1 Sensitivity analyses
	3.1.1 Optimal minimum segment size

	3.2 Training/testing sample size
	3.3 Vegetation pattern classifications
	3.3.1 Microform classifications

	3.4 Plant functional type classifications
	3.5 Classification efficiency

	4 Discussion
	4.1 Consistency of peatland vegetation pattern classifications
	4.2 Spectral separability
	4.3 Topographical data
	4.4 Spatial resolution and segmentation scale
	4.5 Improving mapping of fine-scale vegetation patterns
	4.5.1 Choosing scales of interest

	4.6 Training/testing sample size and allocation
	4.7 Less is more
	4.8 Linking patterns to functions

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References


