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A B S T R A C T

Northern peatland vegetation exhibits fine-scale spatial and spectral heterogeneity that can potentially be
captured with uncrewed aerial vehicle (UAV) data due to their ultra-high spatial resolution (<10 cm). From this
perspective, the contribution of different spectral sensors in mapping various vegetation characteristics has not
been thoroughly investigated. We delineated spatial patterns of plant community clusters, plant functional types
(PFTs), and selected plant species with UAV hyperspectral (HS), UAV multispectral (MS), and airborne LiDAR
(light detection and ranging) topography (TP) data in two northern peatlands. We conducted random forest (RF)
regressions in a geographic object-based image analysis (GEOBIA) framework and compared the relative con-
tributions of the different datasets. In the best regression models, the percentage of explained variance was
24–74 % (RMSE:0.24–0.31), 40–90 % (RMSE:0.12–0.41), and 18–90 % (RMSE:0.03–0.40) for plant community
clusters, PFTs, and plant species, respectively. The MS-TP combination had, in many cases, the highest perfor-
mance, while HS-based models had better performance for some plant community clusters, PFTs, and plant
species. TP features were useful only in certain situations. Overall, our results suggest that UAV MS imagery
combined with TP data outperformed or performed at least almost as well as the models using UAV HS data and
while all data combinations are capable for fine-scale detection of vegetation in northern peatlands. A more
comprehensive investigations of data processing and methodology selection is needed to conclude if there is an
added value of UAV HS data for peatland vegetation monitoring.

1. Introduction

Peatlands are widespread in the northern mid to high latitudes
(45–70◦N), storing nearly 85 % of the global peatland carbon stock,
approximately 550 gigatons (Yu, 2012). These northern peatlands,
found in temperate, boreal, and arctic regions, are associated with cool
to very cool climates and are particularly vulnerable to climate warm-
ing, with Arctic warming being nearly three times the global average
(Loisel et al., 2017). Within peatlands, different vegetation communities
are found on micro-topographically different surfaces due to moisture
and other environmental gradients (Andersen et al., 2011, Baird et al.,
2016). Typical microforms and their representative plant communities

in northern peatlands are elevated and relatively dry strings with dense
vascular plant cover, wet flarks dominated by mosses and sparsely
grown graminoids, and intermediate lawns covered by lower and less
dense shrubs and forbs (Harris et al., 2020, Rydin and Jeglum, 2013).
These microforms create differently patterned string–lawn–flark
microtopographies and mosaics and related plant communities (Rydin
et al., 2006, Swanson and Grigal, 1988).

A plant community is defined as a group of plant species that live
together and have similar environmental requirements. In addition to
species identity, plant functional types (PFTs) can be used to charac-
terize the communities (Harris and Baird, 2019, Andersen et al., 2011).
PFTs group plants with similar physiological and morphological
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attributes, and categories used in peatlands include deciduous shrubs,
evergreen shrubs, forbs, graminoids, Sphagnum mosses, wet brown
mosses, and feather mosses (Räsänen et al., 2020a, Rupp et al., 2019).
Typically, some key plant species can be considered indicators for
different microforms (Harris and Baird, 2019), e.g., Sphagnum fuscum in
hummocks, Sphagnum fallax in lawns, and Sphagnum majus in flarks
(Baird et al., 2016, Rydin and Jeglum, 2013).

To capture spatial patterns of vegetation, uncrewed aerial vehicle
(UAV) data with an ultra-high spatial resolution (<10 cm), is needed in
the spatially heterogeneous peatlands compared with the coarse spatial
resolution remote sensing imagery (Wu et al., 2023, Steenvoorden et al.,
2023, Bertacchi et al., 2019). Vegetation communities may still exhibit a
high degree of spectral similarity, influencing the optimal remote
sensing detection. Several studies have classified peatland vegetation
communities using UAV multispectral (MS) data (Diaz-Varela et al.,
2018, Simpson et al., 2024, Wolff et al., 2023). Furthermore, the use of
hyperspectral (HS) data has been tested in peatlands, and there have
been successful applications of handheld (Erudel et al., 2017, Pang et al.,
2022) and crewed aircraft (Harris et al., 2015, Szporak-Wasilewska
et al., 2021, Middleton et al., 2012, McPartland et al., 2019) HS data.
Lately, also studies using UAV HS data have been conducted
(Abdelmajeed and Juszczak, 2024), but reports of their use in northern
peatlands are still scarce (Zhang et al., 2018, Räsänen et al., 2020b). The
few studies have mainly focused on the quantitative derivation of
vegetation characteristics, not on delineating the spatial distribution of
plant communities or even species. While the potential of HS data has
long been suggested, no studies have yet elucidated the relative
contribution of UAV HS and UAV MS to characterize peatland
vegetation.

Furthermore, using other than optical remote sensing data, such as
topography (TP) data derived e.g. from light detection and ranging
(LiDAR) has also been found to facilitate the classification of peatland

vegetation communities (Beyer et al., 2019, Kaneko et al., 2024), PFTs
(Beyer et al., 2019), and even plant species (Li et al., 2017, Hall and
Lara, 2022). However, it has not been widely investigated whether the
inclusion of TP information impacts differently UAV HS-based than UAV
MS-based vegetation pattern detection (Wolff et al., 2023).

We delineated the spatial patterns of plant community types and %
cover of PFTs and plant species in two mostly treeless northern boreal
peatlands in Finnish Lapland with UAV HS, UAV MS, and TP data.
Specifically, we addressed the following research questions: (1) How
well can the peatland vegetation characteristics be detected with UAV
MS, UAV HS, and TP data? (2) Do HS features improve vegetation
detectability (i.e., mappability potential), compared with MS data? (3)
Do prediction models benefit from the inclusion of TP information?

2. Materials and methods

We collected two types of UAV data (112-band SPECIM AFX10 HS
imagery and 5-band MicaSense RedEdge MS imagery) at two northern
peatlands in Finland. We calculated spectral indices to complement the
original spectral bands, and we derived eight aerial LiDAR-based TP
features. We applied two random forest (RF)-based methods to build
regression models and generate vegetation maps (Fig. 1): geographic
object-based image analysis (GEOBIA) integrated with (1) default RF
and (2) default RF after variable selection using random forest (RF-
VSURF).

2.1. Study sites

We studied two open peatland sites, Halssiaapa and Kaamanen,
located in northern boreal vegetation zone at 67–69◦N in northern
Finland (Fig. 2). In both sites, the microclimate and greenhouse gas
exchange have been widely studied, e.g., with the eddy covariance

Fig. 1. Workflow of the study. In the figure, LiDAR refers to light detection and ranging, DTM to digital terrain model, UAV to uncrewed aerial vehicle, HS to
hyperspectral, MS to multispectral, PFT to plant functional type, TP to topography, GEOBIA to geographic object-based image analysis, and RF to random forest and
RF-VSURF to RF after variable selection using random forest.
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tower method (Heiskanen et al., 2021, Kou et al., 2022, Linkosalmi
et al., 2022). The sites exhibit spatial heterogeneity characterized by
variations in microtopography and plant compositions (Räsänen et al.,
2020a), providing meaningful sites for ultra-high-resolution UAV-based
investigations (Räsänen et al., 2019). Long-term (1991–2020) mean
annual temperature and precipitation are 0.2 ◦C and 539 mm in Hals-
siaapa and 0.0 ◦C and 507 mm in Kaamanen, respectively.

The Halssiaapa site (67◦22′ N, 26◦39′ E, 180 m a.s.l., Fig. 2) is a
patterned and open fen with alternating strings, lawns, and flarks, with
the mean vegetation height of ca. 0.4 m. Altitudinal differences between
strings, lawns and flarks are only tens of centimetres, mostly below half a
meter. The narrow (0.5–10.0 m wide), interconnected dry strings are
covered by various shrubs, such as Betula nana, Andromeda polifolia, and
Vaccinium oxycoccos, and a few stunted trees, mostly Betula pubescens
and Pinus sylvestris. Wet flarks are dominated by wet brown mosses (e.g.,
Sarmentypnum procerum) and sedges (e.g., Carex limosa), and interme-
diate lawns are characterized by Sphagnum mosses (e.g., S. warnstorfii)
and forbs (e.g., Menyanthes trifoliata). Halssiaapa is flooded during
spring (May–early June), with the water table being a few centimetres
above the ground surface in flarks. Some periodical flooding might occur
also later in the season after heavy rains (Mörsky et al., 2012).

The Kaamanen site (69◦8′N, 27◦16′E, 155 m a.s.l., Fig. 2) has a mean
vegetation height of ca. 0.3 m and is characterized by a strong mosaic
pattern of hummock strings and wet flarks. The strings are up to 1 m
high and 10m long and their vegetation consist of evergreen shrubs, like
Empetrum nigrum, Rhododendron tomentosum, and Vaccinium vitis-idaea,
and forbs, such as Rubus chamaemorus. Wet flarks are flooded in the
spring and have some open water cover during most of the seasons. They
are primarily occupied by partly submerged wet brown mosses,

specifically Scorpidium scorpioides, along with sparsely growing Carex (e.
g., C. limosa and C. chordorrhiza) and Trichophorum species (e.g.,
T. alpinum and T. cespitosum). At the string margins, shrubs dominate,
and Sphagnum carpets are also found (e.g., S. lindbergii). Pine forests
(Pinus sylvestris) occur around the fen borders. In the transition zone,
there are pine bogs characterized by various shrubs and forbs, while
their ground layer is covered by feather mosses (e.g., Pleurozium schre-
beri) and Sphagnum mosses (e.g., S. fuscum). There is also a stream
running through the area with its margins covered by tall sedges and
deciduous shrubs (e.g., Salix spp., Vaccinium uliginosum). In addition to
precipitation, Kaamanen receives water through surface flow from the
surrounding areas, particularly during the spring high-flow period.
Owing to their elevated surfaces, the strings exhibit ombrotrophic
characteristics, primarily relying on precipitation for water and nutri-
ents. Thin ice lenses endure within the well-insulated hummocks until
late summer (Maanavilja et al., 2011).

2.2. Vegetation field inventories and community analyses

We conducted vegetation inventories between the last week of July
and the first week of August, corresponding to the peak vegetation
growing season (Table 1). According to our existing land cover maps
(Räsänen et al., 2020b, Räsänen and Virtanen, 2019), we sampled 135
and 132 square plots of 0.25 m2 in Halssiaapa in 2022 and in Kaamanen
in 2021, respectively, using the stratified random sampling method.

During the inventories, we identified vascular plants at the species
level and mosses at the genus or species level and estimated their
%-cover. We used non-metric multidimensional scaling (NMDS) and
fuzzy k-medoid (FKM) clustering to translate the plant inventory data

Fig. 2. Locations of study sites and field plots, and photos of the landscape. The base maps of study sites are true colour images (R=668 nm, G=560 nm, B=475 nm)
from UAV MicaSense RedEdge-M data, and their collection dates are listed in Table 1.
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into plant community clusters (see Figure S1 in Appendix 1). To do this,
we first conducted Wisconsin double standardization and square root
transformation and calculated Bray–Curtis (BC) distances on inventory
data. Second, we performed NMDS to BC matrix by running 20 random
starts to ensure a scaling stress value below 0.1 and restricted the iter-
ation to four dimensions in R using the package vegan (Oksanen et al.,
2020). Third, we searched for the optimal cluster number between 1 and
10 by maximizing the silhouette width (Campello and Hruschka, 2006)
and then applied the determined number to FKM clustering with a
membership exponent of 1.5 using the R package fclust (Ferraro et al.,
2019). We obtained three and four clusters in Halssiaapa and Kaamanen,
respectively. We also ran an indicator species analysis for the cluster
results, using the indicator value method with 999 random permutations
and the R package indicspecies (De Caceres et al., 2020). After inter-
pretation, we named the clusters by their ground surface microforms:
string, flark, and lawn in Halssiaapa, and string top, wet flark, string
margin, and Sphagnum lawn in Kaamanen (plant species compositions,
including indicator species, are given in Tables S1&S2 in Appendix 1).

In addition, we grouped the plant species into seven PFTs: deciduous
shrubs, evergreen shrubs, forbs, graminoids, wet brown mosses, feather
mosses, and Sphagnum, as well as selected 15 and 17 dominant or
common plant species in Halssiaapa and Kaamanen, respectively
(Tables S1&S2 in Appendix 1).

2.3. Remote sensing data and image processing

We collected UAV HS and MS data simultaneously with field in-
ventories (Table 1). The HS imagery was acquired with a SPECIM AFX10
sensor mounted on a DJI Wind 4 UAV with a flight altitude of 117 m and
a field of view (FOV) of 38◦. During the flights, we configured the sensor
with a 4 (spectral option)× 1 (spatial option) binning mode, resulting in
112 spectral bands from a wavelength range of 400–1000 nm (Table S3
in Appendix 1). We geometrically calibrated the imagery using the ENVI
plug-in CaliGeoPro (Specim Limited, Oulu, Finland); we performed the
radiometric calibration by the empirical line method (Wang and Myint,
2015) using three photographed MosaicMill reflectance panels (Alti-
sense Ltd.) with 0.5 m side length in 0 %, 2 %, and 9 % reflectance. In
Kaamanen, we did not have reflectance panels, so we used radiance
instead of reflectance data.

The 5-band MS imagery was acquired by the MicaSense RedEdge-M
sensor mounted on a DJI Phantom 4 UAV with a flight altitude of 70 m
and a focal length of 5.5 mm at 47.2◦ FOV, resulting in 1280 × 960-
pixel photos (Table S4 in Appendix 1). The sensor is also paired with a
downwelling light sensor that records the incident/ambient light mea-
surements above and is used to produce reflectance images. We imple-
mented the geometric and radiometric calibration via Pix4D Pro. The HS
and MS images were captured temporally close to each other, under
predominantly windless and clear weather conditions around noon.
However, a few clouds were occasionally present during the flights.

Spectral indices, derived from spectral reflectance properties, linking
to various plant biophysical properties (e.g., leaf area, leaf pigments,

and vegetation cover and moisture) and health of vegetation, are
commonly used to predict vegetation characteristics and distinguish
vegetation types (Dronova et al., 2021). We calculated 79 and 7 spectral
indices for MS and HS data, respectively (Table 1 and Tables S5&S6 in
Appendix 1), in R using packages of raster (Hijmans, 2018) and hsdar
(Lehnert et al., 2019).

Besides the optical UAV data, we utilized the LiDAR-based digital
terrain model (DTM) with a 2 m resolution from the National Land
Survey of Finland (NLSF) via open data service. The original LiDAR data
contains 3D point clouds with a point density of 0.5 points per square
metre. We derived eight TP features from the DTM, including elevation
in metres, slope in degrees, topographical wetness index, and TP posi-
tion index with five different neighbourhood radii in the SAGA GIS 7.8.2
(Conrad et al., 2015) (Table 1).

2.4. Geographic object-based image analysis and modelling

We performed the regressions with a GEOBIA approach, which has
been demonstrated to effectively avoid the salt-and-pepper effect com-
mon in pixel-based classifications (Berhane et al., 2018, Du et al., 2021).
In GEOBIA, images are analysed at the object or segment level, grouping
neighbouring pixels with similar spectral, spatial, and contextual char-
acteristics to reduce noise and variability within individual pixels
(Hossain and Chen, 2019). GEOBIA usually consists of two main steps:
(1) image segmentation and (2) feature extraction and image analysis
(Hossain and Chen, 2019, Blaschke et al., 2014). Segmentation is the
basis of GEOBIA; it divides the image pixels into spatially contiguous
and homogeneous objects and significantly affects the subsequent image
analysis (Kotaridis and Lazaridou, 2021), i.e., the RF regression
modelling in this study.

We used the 5-band UAV MS data in the multi-resolution segmen-
tation (MRS) (Baatz and Schäpe, 2000), in TerraView 5.6.4. MRS has
four main parameters: the minimum segmentation size, the spectral
similarity threshold, and the weight of colour and compactness; the first
two metrics control the size of segments, and the other two impacts the
shape of segments (Witharana and Civco, 2014, Räsänen et al., 2013).
After several trials and based on visual interpretation, we set the pa-
rameters to 150 (0.96 m2 area), 0.15, 0.8, and 0.5, respectively (seg-
mentation results are shown in Figure S2 in Appendix 1).

We extracted the remote sensing features (Table 1) and applied them
to the segments and the vegetation plots. We used the plot data for
training and validation and the segment data for constructing the
vegetationmaps. To compare the contribution of specific RS features, we
used four input options: (1) 191 HS layers (HS), (2) 191 HS layers and 8
TP layers (HS+TP), (3) 12 MS layers (MS), and (4) 12MS layers and 8 TP
layers (MS+TP) (Table 1).

After feature extraction, we performed default RF regressions
(Breiman, 2001) without or with variable selection RF-VSURF (Genuer
et al., 2015). RF employs ensemble learning and majority voting, miti-
gates overfitting and balances outliers or erroneous predictions from
individual trees, resulting in more stable and reliable predictions. It has

Table 1
Summary of remote sensing data.

Site Date of
acquisition

UAV data Spatial resolution
[m]

Covered area
[ha]

No. of layers

Kaamanen 29 Jul 2021 Specim AFX10 0.1 29.21 191: 112 spectral bands and 79 HS spectral indices (Tables S3&S5 in
Appendix 1)

MicaSense RedEdge-
M

0.08 12: 5 spectral bands and 7 MS spectral indices (Tables S4&S6 in Appendix
1)

Aug 1 2018 LiDAR DTM 2 8: elevation, slope, TWI and 5 TPIs (5, 10, 20, 50, and 100 m distance)
Halssiaapa 24 Jul 2022 Specim AFX10 0.09 31.46 Same as the Kaamanen site

MicaSense RedEdge-
M

0.08 Same as the Kaamanen site

Aug 20 2018 LiDAR DTM 2 Same as the Kaamanen site

Abbreviations: HS=hyperspectral; MS=multispectral; DTM=digital terrain model; TWI=topographical wetness index; TPI=topographical position index.
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successfully been used in remote sensing mapping applications
(Jafarzadeh et al., 2022, Prentice et al., 2021, Maxwell et al., 2018). By
selecting a subset of relevant variables from a larger set, VSURF en-
hances model interpretability, reduces dimensionality that is present
particularly in HS datasets, and often improves model fit (Putkiranta
et al., 2024, Wengert et al., 2022).

Previous studies have suggested that a large number of trees and a
small number of split variables yield optimal RF models (Ma et al., 2015,
Belgiu and Dragut, 2016). Therefore, for each RF regression run, we set
the number of trees to 500 and the number of splits to 1/3 of the number
of input RS predictors, following the default setting given by Liaw and
Wiener (2002) within the R package randomForest. We proceeded RF-
VSURF as follows. First, we conducted VSURF via the R package
through a three-step procedure: (1) ranking all variables according to
their importance in RF runs, (2) nesting RF models involving the most
important variables from the first step, and selecting the model with the
lowest OOB (out-of-bag) error, and (3) stepwise selection of the
remaining variables, whereby additional variables were only included
when the OOB error decreased significantly compared to the average
variation obtained by adding noisy variables (Genuer et al., 2015).
Second, we run RF with VSURF selected variables. Overall, we compared
regression model performance between RF without variable selection
and RF with VSURF to determine whether variable reduction enhances
the model fit.

For validation, we implemented a 10-fold cross-validation to
compute three validation parameters: the percentage of explained
variance (pseudo-R2, 1 − (mean squared error)/variance(response)),
MAE (mean absolute error), and RMSE (root mean square error). We
calculated the feature importance rate using Gini importance, also
known as mean decrease impurity, a commonly used method for
measuring feature importance in machine learning (ML) models
(Behnamian et al., 2017). Gini importance quantifies each feature’s
contribution to the model by assessing how much it decreases impurity
in a decision tree split. This method provides a clear and interpretable
metric for feature importance, allowing us to identify which features
play the most significant roles in our regression models. Due to the
rather high computational demands, we built a Python environment,
including the main modules of rasterio and scikit-learn (Pedregosa et al.,
2011), to perform feature extraction and RF analysis on CSC’s Puhti

supercomputer (https://www.csc.fi/).

3. Results

3.1. Assessing models by different RS options

3.1.1. Model performance
RF and RF-VSURF had relatively similar regression performance,

with the performance varying among the four types of RS datasets, the
two peatland sites, and the three vegetation categories (Fig. 3, Table 2).
In Halssiaapa, the percentage of variance explained was 40–55 % via RF
and 42–62 % via VSURF, whereas in Kaamanen, it was 24–44 % via RF
and 25–47 % via VSURF (Fig. 3). With the two RF-based regression
approaches, Halssiaapa showed better predictions for plant community
clusters (50–54 %) and PFTs (51–57 %) compared to plant species
(44–48 %). In Kaamanen, plant community clusters (36–42 %) were
better predicted than PFTs (28–34 %) and plant species (28–33 %).

The variance explained rate of vegetation categories varied widely
among the four RS models, indicating that no single RS option was
optimal in all cases, and generally there was not much difference be-
tween model types. Nevertheless, MS+TP had on average the highest
variance explained among vegetation categories. Specifically, HS+TP
models were the best for predicting plant community clusters and plant
species in Halssiaapa; MS+TP models for PFTs in Halssiaapa and plant
species in Kaamanen; MS models for plant community clusters in Kaa-
manen; and HS models for PFTs in Kaamanen. Additionally, the
modelling performance for different datasets was similar for RF and RF-
VSURF models, with HS models performing slightly better with RF-
VSURF than with RF. For simplicity, and to reduce the amount of pro-
duced maps, only RF-based models were in the end adopted for pro-
ducing the vegetation maps (Fig. 3, Table 2).

According to RF regressions, the variance explained rates varied
widely among vegetation characteristics, with MS models generally
better than HS models on average (Fig. 4). However, HS models ach-
ieved higher explained variance rates than MS models in some cases.
Some characteristics had high model performance (explained variance
> 70 %) such as string fens, forbs, and Sphagnum in Halssiaapa, and
evergreen shrubs and Menyanthes trifoliata in Kaamanen. HS models
improved the detection of lawns and Rhododendron tomentosum in

Fig. 3. Model performance comparison between random forest (RF) and variable selection using random forest (VSURF) across three vegetation categories: plant
community cluster (Clu), plant functional type (PFT), and target plant species (Sps). Models were built using four types of RS data: (1) HS=191 hyperspectral (HS)
layers; (2) HS+TP=191 HS and 8 topography (TP) layers; (3) MS=12 multispectral (MS) layers; and (4) MS+TP=12 MS and 8 TP layers.
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Halssiaapa as well as evergreen shrubs, forbs, graminoids, and Tricho-
phorum spp. in Kaamanen. TP features also increased model perfor-
mance in some cases, particularly for lawns, feather mosses, Carex
paupercula, and Comarum palustre in Halssiaapa and for Sphagnum lawns,
Carex limosa, and Menyanthes trifoliata in Kaamanen. However, in other
cases, models with TP features were worse than the corresponding
spectral-only models.

3.1.2. Feature importance
HS indices had on average the highest importance in HS+TP options,

followed by certain HS bands, while in MS+TP options, TP features were
the most important in Kaamanen and MS features in Halssiaapa (Fig. 5).

3.2. Vegetation maps

We used the HS+TP and MS+TP datasets to generate the final
vegetation maps (examples in Fig. 6&Fig. 7, all maps in Appendices
2–3). While both models captured the spatial patterns of vegetation,
HS+TP-based maps typically delineated more details than MS+TP
maps. For example, the HS+TP model clearly distinguished the lawn in
the northeast corner of Halssiaapa and depicted Menyanthes trifoliata in
the centre of Kaamanen. Based on the maps, vegetation had different
spatial patterns at study sites, as Halssiaapa consisted of merged linear
strings alternating with lower and wetter flarks and patches of lawn,
while Kaamanen had maze-like strings surrounded by a matrix of flarks.
Moreover, different PFTs and plant species concentrated on specific
microforms such as feather mosses (including Dicranum spp., Hyloco-
mium splendens, Plagiomnium spp., Pleurozium schreberi, and Polytrichum
strictum) growing along strings in Halssiaapa and the dense evergreen
shrubs in string tops in Kaamanen.

4. Discussion

4.1. Model performance and differences between sites and characteristics

In the regression models, the percentage of variance explained varied
markedly between sites and vegetation categories, where plant com-
munity clusters, PFTs, and plant species were on average explained by
24–74 %, 40–90 %, and 18–90 %, respectively, with RF regression
models. In most cases, the MS+TP setting performed well, although in
some cases the HS settings can also achieved good performance (Fig. 3&
Fig. 4).

Differences in model performance between sites may be due to
distinct landscape patterns, i.e., linear strings in Halssiaapa vs. string
mazes in Kaamanen, influencing the modelling processes. Another
explanation for the relatively poor modelling performance in Kaamanen
may be the use of radiance instead of reflectance data for UAV HS. The

magnitude of spectral radiance reflects the amount of incident solar
radiation (spectral irradiance) reaching the target and is impacted by
various factors such as the solar zenith angle, atmospheric conditions,
water vapour and aerosol loading levels (Peddle et al., 2001). Reflec-
tance or atmospherically calibrated spectral data are commonly imple-
mented in UAVs and other remote sensing applications (Salamí et al.,
2014, Assmann et al., 2019). Nevertheless, radiometric data can still be
used as a reliable input for land cover classification, but the pre-
processing of radiometric data and the approach of image analysis can
greatly affect the accuracy and reliability of the output results (Plaza
et al., 2009, Aasen et al., 2018).

We also found that plant community clusters and PFTs were pre-
dicted better than plant species (Fig. 4), although some Carex species (e.
g., C. limosa and C. chordorrhiza) had explained variance of over 50 %
(Fig. 4). Consistent with previous findings (Pang et al., 2022, Räsänen
et al., 2020a), some plant community clusters and PFTs were relatively
well predicted, e.g., strings and Sphagnum in Halssiaapa and string tops
and margins and evergreen shrubs in Kaamanen (Fig. 4), which is
attributed to the higher spectral and topographic separability of these
characteristics.

Peatland vegetation patterned along the environmental gradient, e.
g., the hydrology and microtopography, the detectability of PFTs and
plant species was also related to plant community clusters, leading to
shrubs (e.g., Rhododendron tomentosum) and forbs (e.g., Rubus chamae-
morus) in strings having good predictions in Halssiaapa, and feather
mosses in string tops being relatively well modelled in Kaamanen.
Moreover, influenced by vegetation cover proportion and plant
composition (Tables S1&S2 in Appendix 1), the explained variance of
PFTs and plant species varied greatly between sites, with wet brown
mosses and Sphagnum well captured only in Halssiaapa and feather
mosses in Kaamanen. In addition, for some less abundant species or
plant communities, especially if they are also rare, field data may be
insufficient and unrepresentative.

4.2. Comparison of hyperspectral vs. Multispectral

Although some previous results have highlighted the benefits of
using HS data, e.g., for predicting fractional covers of PFTs (Zhang et al.,
2018) and producing habitat distribution maps of peatlands (Szporak-
Wasilewska et al., 2021), we did not see HS generally improving model
performance relative to MS. In some cases, HS models performed even
worse (Fig. 3 & Fig. 4). However, supporting a recent finding by Ara-
sumani et al. (2023), who reported that spaceborne HS data promoted
fractional cover predictions of two graminoid species, Phragmites aus-
tralis (Common Reed) and Typha spp. (Cattail), our results indicated that
HS improved the model performance for some Carex species (Fig. 4).

Another issue long discussed is that plant communities have fairly

Table 2
Mean RMSE and MAE of regression models using random forest (RF) and variable selection using random forest (VSURF) for plant community cluster (Clu), plant
functional type (PFT), and target plant species (Sps), across four RS data options: (1) HS=191 HS layers; (2) HS+TP=191 HS layers and 8 TP layers; (3) MS=12 MS
layers; and (4) MS+TP=12 MS layers and 8 TP layers.

Regression RS data RF VSURF RF VSURF
RMSE MAE RMSE MAE RMSE MAE RMSE MAE
Halssiaapa Kaamanen

Clu HS 0.267 0.210 0.267 0.211 0.329 0.275 0.320 0.267
HS+TP 0.263 0.214 0.260 0.209 0.306 0.252 0.292 0.238
MS 0.262 0.221 0.262 0.220 0.318 0.272 0.316 0.272
MS+TP 0.263 0.221 0.264 0.222 0.293 0.245 0.292 0.243

PFT HS 0.245 0.181 0.234 0.171 0.359 0.271 0.352 0.262
HS+TP 0.231 0.171 0.219 0.159 0.353 0.270 0.339 0.258
MS 0.233 0.170 0.233 0.169 0.379 0.292 0.375 0.288
MS+TP 0.226 0.162 0.219 0.153 0.345 0.266 0.345 0.264

Sps HS 0.148 0.094 0.143 0.089 0.178 0.116 0.175 0.111
HS+TP 0.145 0.093 0.140 0.087 0.175 0.114 0.170 0.108
MS 0.137 0.084 0.135 0.082 0.176 0.113 0.178 0.112
MS+TP 0.138 0.087 0.136 0.082 0.171 0.112 0.171 0.109
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similar spectral responses in peatland environments, causing great
spectral confusion and hampering spectral discrimination (Zhou et al.,
2021, Adam et al., 2010). The high data dimensionality and associated
noise of HS data possibly hinder rather than facilitate plant species
separation. For example, Kupkova et al. (2023) noted no significant
differences between UAV MS and HS for discriminating tundra grass
species. Nevertheless, we identified some prominent HS bands and
indices that have high importance in the models (Fig. 5), supporting the
conclusions of a literature review on HS plant classification (Hennessy
et al., 2020). Furthermore, in HS+TP models, the most important

variables were generally HS variables whereas in MS+TP models, TP
variables were among the most important. Overall, our results suggest
that there is no extensive added value in incorporating UAV HS data in
optimal peatland vegetation practices, but some HS spectral indices
(Fig. 5), e.g., Carter 3 (R605/R760, (Carter, 1994)) and CRI 1 (Carot-
enoid Reflectance Index 1, 1/R515 − 1/R550, (Gitelson et al., 2002)),
were generally beneficial at both sites. However, the complex structure
of HS compared to MS information might require a more extensive
experimenting of data processing that can also be beneficial for the MS
data, for example advanced atmospheric corrections (Marcello et al.,

Fig. 4. RF Model performance of vegetation characteristic at two sites: (A) plant community clusters, (B) plant functional types, and (C) plant species, by four RS data
options: HS or MS, spectral-only or added TP layers. The full names of plant species are given in Tables S1&S2, and the RMSE and MAE of models are given in
Tables S7&S8 in Appendix 1.
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2016) and additional steps including different spectral reduction and
unmixing techniques (Li et al., 2022, Borsoi et al., 2021). While our data
processing has been adequate, it regardless might have not leveraged the
full potential of narrow-band hyperspectral information for vegetation
modelling. In this context, using MS data offers the clear advantage of
easier data collection and processing.

4.3. Role of topography data

Several studies have demonstrated that integrating optical imagery
and LiDAR data can improve vegetation mappings in multiple ecosys-
tems such as wetland vegetation communities (Wang et al., 2023), PFTs,
and plant species in grasslands (Hall and Lara, 2022) and peatland
habitat types (Szporak-Wasilewska et al., 2021). According to our re-
sults, however, we argue that the relative contribution of TP features is
limited and only significant for some cases (Fig. 3-Fig. 5). TP features
allow distinguishing plant community clusters with similar spectral
behaviour but different microtopographic positions. Likewise, for PFTs
and plant species detection, we further suggest the advantages of TP in
terms of presenting micrographic information. For instance, including
TP was particularly beneficial for feather mosses (e.g., Pleurozium
schreberi), which occur along strings and under pines, and forbs Coma-
rum palustre and Menyanthes trifoliata, which have a high presence in
especially lawns. These findings are in contrast to previous studies
(Kopecky et al., 2021, Hall and Lara, 2022, Marcinkowska-Ochtyra
et al., 2018, Durgan et al., 2020), which have mainly emphasized
LiDAR-derived TP features complementing spectral data. We also found
that the relative benefit of TP data was approximately similar for HS and
MS-based models. The spatial resolution difference between UAV
(0.08–0.1 m) and DTM (2 m) data might explain the limited aid offered
by adding TP features. However, the incorporation of TP data seems to
have at least some value, and if TP had higher spatial resolution, it might
have helped even more.

4.4. Limitations and next steps

The produced vegetation maps allow us to see the patterns and
presence of vegetation types within peatlands and further understand
the changes such as fen–bog transition (Kolari et al., 2021, Wolff et al.,
2023) and disturbances (Li et al., 2024, Lovitt et al., 2018). The detailed
information on peatland vegetation spatial patterns strengthens the
detection and modelling of biological and biogeochemical parameters
that use vegetation properties as input data, e.g., leaf area index,
biomass, and greenhouse gases (Assiri et al., 2023, McPartland et al.,
2019, Hoyos-Santillan et al., 2019).

We calculated spectral properties from the UAV HS and MS data, i.e.,
bands and indices and TP features for building regressions and gener-
ating vegetation maps, without exploring other spatial characteristics.
However, some studies have shown that a sub-metre spatial resolution is
most effective for achieving good peatland vegetation mapping
(Räsänen and Virtanen, 2019, Steenvoorden et al., 2023). In addition,
phenological information offers another perspective that facilitates ac-
curate vegetation detection as multi-temporal data has been shown the
increase model performance (Pang et al., 2022, Wu et al., 2023). We
conducted only one-time UAV flights, but UAV data collection can be
repeated regularly over time; therefore, future research could include
UAV data about vegetation dynamics and include it in prediction models
(Wu et al., 2023). However, when conducting UAVmissions, it is critical
to weigh the trade-offs between spatial coverage and image acquisition
cost relative to the research objectives.

Future research could also evaluate the effectiveness of combining
UAV HS and MS data with coarser scale products to develop approaches
to upscale vegetation information across larger spatial extents
(Villoslada et al., 2024). Further examination could also be put on fusing
UAV-based optical data with vegetation height models derived from
structure-from-motion or LiDAR. Integrating different types of remote
sensing data, including UAV and synthetic aperture radar (SAR), could

Fig. 5. Sum of Gini importance scores of all regressions by HS+TP (a,b) or MS+TP (c,d) RS data settings at two sites. The figure illustrates the top 50 most important
features of HS+TP and all features of MS+TP settings. For the full list and detailed information on all RS features, see Table 1 and Tables S3–S6 in Appendix 1.
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also provide comprehensive insights into peatland research (Szporak-
Wasilewska et al., 2021, Wang et al., 2023, Isoaho et al., 2024, Räsänen
et al., 2022). On the other hand, fieldwork for collecting field reference
data is time-consuming and sometimes challenging in peatlands,
necessitating well-designed, representative, and balanced sampling.
Therefore, establishing a comprehensive framework to process and
analyse multi-scale cross-platform data is essential for effectively
deriving peatland vegetation characteristics and optimizing the need for
fieldwork (Oldeland et al., 2021).

Moreover, we compared UAV HS and UAVMS data only with one ML
algorithm (i.e., RF with and without variable selection). Contrary to our
expectations, the differences between models with and without variable
selection were generally quite small. Even though the selected variable
selection method (VSURF) reduces the dimensionality and redundancy
in the data, the models with VSURF did not perform largely better than
models without it even with highly multidimensional HS data. On the
other hand, deep learning (DL) algorithms could facilitate image and
statistical analysis to reveal the strengths of HS data since DL can
effectively handle high-dimensional data (Dahiya et al., 2023). We
briefly experimented with one DL method, namely a feedforward neural
network, and preliminary tests did not show a significant improvement
in HS or MS models and did not change our conclusions about the
relative performance of different datasets (Table S9 in Appendix 1). In
addition, the drone data processing steps (including training data gen-
eration) led to the best results for the ML model, while the DL model
involved different image processing steps, especially for the HS dataset,
which further complicated the comparison (Zhang and Zhang, 2022).
Therefore, more comprehensive studies are needed in the future to draw
more reliable conclusions about whether HS outperformsMS in different
landscapes, which should consider not only the choice of methods, such
as ML and DL with more complex architectures, but also the

incorporation of other data processing techniques.

5. Conclusions

We explored the use of multi-source UAV data in detecting various
peatland vegetation characteristics via an RF-integrated GEOBIA
approach in two northern peatlands. For the first time, we compared the
relative contribution between UAV HS and MS data for predicting three
peatland vegetation categories: plant communities, PFTs, and plant
species; according to the average performance of the best model, the
variance explained was 44–56 %, 32–55 %, and 30–45 %, respectively,
with RF regression models at the two sites. Based on our findings, we
cannot suggest a single optimal data combination for vegetation pattern
detection, as large differences existed between sites and vegetation
characteristics about which predictor data functioned the best. In many
situations, MS models functioned better than HS models, but for some
vegetation characteristics, HS improved the model performance relative
to MS. Additionally, integrating TP features improved model perfor-
mance only in some cases, particularly benefiting MS+TP models.
Although in our case, UAV HS was not as advantageous as we expected,
this does not mean that HS has no benefits for vegetation monitoring in
another case. Instead, we emphasize that the adoption of UAV HS, UAV
MS, and TP data depend on the specific site conditions and landscapes.
Our study suggests that the fusion of UAV MS and TP data may be an
effective combination in most peatland vegetation situations. However,
more comprehensive studies on the use of UAV HS, including consid-
eration of data processing and methodological choices, are needed to
understand the benefits of added spectral information for spectrally
complex and spatially heterogeneous peatland ecosystems.

Fig. 6. Example vegetation maps based on (A row) MS+TP and (B row) HS+TP models in Halssiaapa. Other predicted maps are shown in Appendix 2.
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BAATZ, M. & SCHÄPE, A. Multiresolution Segmentation: an optimization approach for
high quality multi-scale image segmentation. 2000. 12-23.

Baird, A.J., Milner, A.M., Blundell, A., Swindles, G.T., Morris, P.J., 2016. Microform-
scale variations in peatland permeability and their ecohydrological implications.
Journal of Ecology 104, 531–544.

Behnamian, A., Millard, K., Banks, S.N., White, L., Richardson, M., Pasher, J., 2017.
A systematic approach for variable selection with random forests: achieving stable
variable importance values. Ieee Geoscience and Remote Sensing Letters 14,
1988–1992.

Belgiu, M., Dragut, L., 2016. Random forest in remote sensing: A review of applications
and future directions. Isprs Journal of Photogrammetry and Remote Sensing 114,
24–31.

Fig. 7. Example vegetation maps based on (A row) MS+TP and (B row) HS+TP models in Kaamanen. Other predicted maps are shown in Appendix 3.

Y. Pang et al.

https://doi.org/10.1016/j.jag.2024.104043
https://doi.org/10.1016/j.jag.2024.104043
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0005
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0005
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0005
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0005
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0010
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0010
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0010
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0015
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0015
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0015
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0020
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0020
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0020
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0025
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0025
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0025
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0030
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0030
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0030
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0035
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0035
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0035
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0045
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0045
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0045
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0050
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0050
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0050
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0050
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0055
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0055
http://refhub.elsevier.com/S1569-8432(24)00397-2/h0055


International Journal of Applied Earth Observation and Geoinformation 132 (2024) 104043

11

Berhane, T.M., Lane, C.R., Wu, Q.S., Anenkhonov, O.A., Chepinoga, V.V., Autrey, B.C.,
Liu, H.X., 2018. Comparing pixel- and object-based approaches in effectively
classifying wetland-dominated landscapes. Remote Sensing 10.

Bertacchi, A., Giannini, V., di Franco, C., Silvestri, N., 2019. Using unmanned aerial
vehicles for vegetation mapping and identification of botanical species in wetlands.
Landscape and Ecological Engineering 15, 231–240.

Beyer, F., Jurasinski, G., Couwenberg, J., Grenzdorffer, G., 2019. Multisensor data to
derive peatland vegetation communities using a fixed-wing unmanned aerial
vehicle. International Journal of Remote Sensing 40, 9103–9125.

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., van
der Meer, F., van der Werff, H., van Coillie, F., Tiede, D., 2014. Geographic object-
based image analysis - towards a new paradigm. Isprs Journal of Photogrammetry
and Remote Sensing 87, 180–191.

Borsoi, R., Imbiriba, T., Bermudez, J.C., Richard, C., Chanussot, J., Drumetz, L.,
Tourneret, J.Y., Zare, A., Jutten, C., 2021. Spectral variability in hyperspectral data
unmixing. Ieee Geoscience and Remote Sensing Magazine 9, 223–270.

Breiman, L., 2001. Random forests. Machine Learning 45, 5–32.
Campello, R.J.G.B., Hruschka, E.R., 2006. A fuzzy extension of the silhouette width

criterion for cluster analysis. Fuzzy Sets and Systems 157, 2858–2875.
Carter, G.A., 1994. Ratios of leaf reflectances in narrow wavebands as indicators of plant

stress. International Journal of Remote Sensing 15, 697–703.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J.,
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Penttilä, T., Linkosalmi, M., Mikola, J., Laurila, T., Aurela, M., 2021. Carbon dioxide
and methane exchange of a patterned subarctic fen during two contrasting growing
seasons. Biogeosciences 18, 873–896.

Hennessy, A., Clarke, K., Lewis, M., 2020. Hyperspectral classification of plants: a review
of waveband selection generalisability. Remote Sensing 12.

Hijmans, R.J., 2018. raster: Geographic data analysis and modeling. R Package Version 2,
8.

Hossain, M.D., Chen, D., 2019. Segmentation for object-based image analysis (OBIA): A
review of algorithms and challenges from remote sensing perspective. Isprs Journal
of Photogrammetry and Remote Sensing 150, 115–134.

Hoyos-Santillan, J., Lomax, B.H., Large, D., Turner, B.L., Lopez, O.R., Boom, A.,
Sepulveda-Jauregui, A., Sjogersten, S., 2019. Evaluation of vegetation communities,
water table, and peat composition as drivers of greenhouse gas emissions in lowland
tropical peatlands. Science of the Total Environment 688, 1193–1204.

Isoaho, A., Ikkala, L., Pakkila, L., Marttila, H., Kareksela, S., Rasanen, A., 2024. Multi-
sensor satellite imagery reveals spatiotemporal changes in peatland water table after
restoration. Remote Sensing of Environment 306.

Jafarzadeh, H., Mahdianpari, M., Gill, E.W., Brisco, B., Mohammadimanesh, F., 2022.
Remote Sensing and Machine Learning Tools to Support Wetland Monitoring: A
Meta-Analysis of Three Decades of Research. Remote Sensing 14.

Kaneko, K., Yokochi, M., Inoue, T., Kato, Y., Fujita, H., 2024. Topographic conditions as
governing factors of mire vegetation types analyzed from drone-based terrain model.
Journal of Vegetation Science 35.

Kolari, T.H.M., Sallinen, A., Wolff, F., Kumpula, T., Tolonen, K., Tahvanainen, T., 2021.
Ongoing fen-bog transition in a boreal aapa mire inferred from repeated field
sampling, aerial images, and landsat data. Ecosystems.

Kopecky, M., Macek, M., Wild, J., 2021. Topographic Wetness Index calculation
guidelines based on measured soil moisture and plant species composition. Science
of the Total Environment 757.

Kotaridis, I., Lazaridou, M., 2021. Remote sensing image segmentation advances: A meta-
analysis. Isprs Journal of Photogrammetry and Remote Sensing 173, 309–322.

Kou, D., Virtanen, T., Treat, C.C., Tuovinen, J.P., Räsänen, A., Juutinen, S., Mikola, J.,
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