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a b  s  t  r  a  c t

Erosion  control  of  riverbank  is  frequently  necessary  to protect  human investments  situated  along  rivers.

The technique chosen  for  such erosion  control  construction  may  have  major  impacts  on biodiversity  and

on the  functioning  of  river  corridors.  Even  if  there  is  agreement,  that  biodiversity  should  be  one criterion

for  choosing  embankments  techniques  little  is known  about  whether  such  techniques  can accommodate

biodiversity.

We aimed  to determine  coleopteran  and plant  taxonomic  diversities  along  a  naturality  gradient  of

riverbank  protection  systems,  ranking  from  entirely  civil  engineering  structures,  through  combined  con-

structions  (mixing  civil  engineering  and bioengineering),  to purely  bioengineering  structures.

Fifteen  sites (five sites  of  each  technique)  were sampled  in the  Rhône-Alpes  region  (S.E.  France).  On

each site, vegetation  was sampled  along  three  transects  from  the  bottom  to  the  top  of  the  riverbank and

flying beetles by  trapping.

In  total, we recorded  148  plant  species  and  78 beetle genera.  We found  significantly  lower  animal and

plant  diversities  within  civil  engineering  constructions  than  in the  other  two  techniques.  Diversities  of

both techniques  tended  to be  higher,  although  not significantly,  in  combined  techniques  than  in purely

bioengineering  ones.  Furthermore,  civil  engineering  structures were  more  subject  to invasion  by exotic

plant  species  than the  two  other techniques.  These  results  quantify  and highlight  the  interest  of  bioengi-

neering  techniques  compared  to civil  engineering  in enhancing  biodiversity  and limiting  invasive  species

techniques.

1. Introduction

In addition to its high level of  biodiversity, riparian corri-
dors supply multiple ecosystem services such as  nutrient control,
flood control, shading effect and social aspects. Riparian corridors
have therefore been widely recognized as  key component in land-
scapes (Décamps, 2011). There is  a  strong causal linkage between
biodiversity and ecosystem functioning (Maestre et al.,  2012). Bio-
diversity loss may induce a  modification of natural ecosystem
functioning and ecosystem services (McNeely, 2010).

However, Western European riparian corridors and their  veg-
etation have been widely affected by  centuries of  human use.
River corrections and associated flood control have been primar-
ily perceived has a great human achievement in environmental
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control. However, shortly after initial success such artificial land-
scapes spotlight a  major conflict between riparian ecosystem
conservation and human patrimony protection (Pahl-Wostl, 2006),
as  such river straightening has lead to  a  drastic loss of  biodiversity
in riparian systems. In  urbanized areas as  well as in agricul-
tural landscapes, space available for riparian vegetation is often
reduced to the riverbank only. Thus, organisms can hardly circu-
late along there  remnants of the past riparian corridors especially
when civil engineering erosion control structures are  used (Nilsson
et  al., 2005). Such interruptions in the corridor mosaic may lower
biological continuity by  reducing circulation, refuge and feeding
opportunities, and by  increasing thermal contrasts during summer.
Altered landscapes and disrupted corridor result in a  global ripar-
ian ecosystem loss (Poff et al., 1997; Tockner and Stanford, 2002).
Consequently, biodiversity conservation should be a strategy for
practitioners to enhance ecosystem functioning (Isbell et al., 2011).

In addition, direct exposure to flood and high flood fre-
quency lead to  high propagule fluxes on bare soils and promote
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colonization by exotic species and subsequently invasion (Décamps
et  al., 1995). Therefore, exotic species richness is significantly
greater in riparian zones compared to  upland sites (Stohlgren et al.,
1998).

Habitat restoration has been clearly identified as  a key ele-
ment to  reverse negative anthropic impacts on biodiversity and
ecosystems functioning (Helfield et al.,  2012). Public policy such
as the European Water Framework Directive (WFD; 2000/60/EC)
encourages a global “good ecological status” of aquatic environ-
ment including morphological conditions such as structure of the
riparian zone. A study ordered in 2005 by the French Ministry of
Ecology and Sustainable Development highlights that 51% of the
surface water mass would not reach the objective of  “good ecologi-
cal status” by 2015 (IFEN, 2006). Improving biodiversity on artificial
riverbanks may act in  favour of  this objective and in particular if
alternatives to  civil engineering are used such as  bioengineering
techniques (Li and Eddleman, 2002).

Bioengineering techniques for erosion control consists in the
uses of living plants in order to mimic natural vegetation able
to resist intense scouring (Gray and Sotir, 1996; Norris et  al.,
2008; Evette and Frossard, 2009). Bioengineering applied to river-
banks aims at combining both artificial and natural components
to provide protection at the entire bank level (Evette et  al.,  2012).
In addition to their erosion control capacity, bioengineering struc-
tures are supposed promoting the recovery of  indigenous species
and to ensure better plant coverage than artificially reconstructed
embankments using civil engineering techniques (Pezeshki et  al.,
2007). One of  the arguments given for choosing bioengineering
structures instead of  civil engineering ones is that the first pro-
mote the re-establishment of  a functional and self-sustainable
ecosystem; however, to our knowledge, no quantitative scientific
evidences have been produced to  support this idea. Until now
socio-economical issues are the main reasons to whether protect
or not. River and land managers’ final decision on which riverbank
protection technique will be used is mainly based on several cru-
cial points such as  hydro-engineering aspects, bed material and
watercourse bank stability (Schiechtl and Stem, 1996). However, no
quantitative ecological aspect is  for the moment taken into account
in the decision line.

To date, many scientific studies on bioengineering structures
along rivers focus on methodological aspects such as structures,
construction methods, mechanical resistance and the choice of
species (Breton et  al., under review), compared to the few works
which are dedicated to  biodiversity subsequently related to ero-
sion control structures on watercourse banks. Since 2002 and the
early work on the environmental and ecological advantages of bio-
engineering structures (Li and Eddleman, 2002), few studies have
used quantitative methods to investigate relation between bio-
diversity and erosion control structures. Some works are dealing
with plant species and habitat diversity assessment but remain
study cases on very few sites (Li  et  al., 2006; Sudduth and Meyer,
2006). On the other hand, studies have been done on riverbank
restoration by removing bank fixation or protection and compar-
ative biological survey on restored and non-restored sites were
made (Helfield et al.,  2007; Januschke et  al.,  2011). Though there is
a big knowledge gap  concerning quantitative biological compari-
son of riverbank techniques for erosion control and their impact
on ecosystem properties (Pahl-Wostl, 2006). To our knowledge,
no study has yet demonstrated the relationship between materials
and techniques used for erosion control and associated changes in
biodiversity on the constructions.

The aims of this study were (i) to evaluate and compare animal
and vegetal biodiversity on three riverbank techniques for erosion
control and (ii) to  assess the capacity of  different riverbank pro-
tection techniques to  limit invasion of exotic species. The applied

aim of this study was to integrate ecological aspects into the deci-
sion line by providing ecological data. We provide guidelines to
practitioners on what ecological conditions they can expect on the
riverbank technique chosen in  order to develop strategies linked to
riverbank management and allow restoration of  ecosystem goods
and services. We hypothesize that civil engineering techniques do
not promote biodiversity as  good as  bioengineering techniques.

2. Materials and methods

2.1. Sites

We assessed biological diversity on five replicates of three river-
bank techniques (Fig.  1):

- Civil engineering embankments: riprap protection (rocks used to
stabilize shorelines, against scour and erosion) noted as  “Min-
eral”.

- Mixed embankments combining civil engineering techniques
(riprap at the lower part of the bank) and bioengineering tech-
niques (cuttings and woody plantation at the upper part) noted
as “Mixed”.

- Completely bioengineering embankments: (willow fascines at
the lower part of  the bank with cuttings and woody plantation
at the upper part) noted as  “Vegetal”.

These  three techniques were considered as three level of  a nat-
urality gradient. Naturality can be  defined by  the amount of  living
vegetation used in the construction as  classification key criterion
(Brunel, 2009; Werdin-Pfisterer et  al., 2009). Mineral structures
were considered as  man-made environments with little plant cov-
erage, different from the environment found on natural mountain
riverbank. Mixed methods show intermediate plant cover with
revegetation on half of  the bank. Bioengineering structures are
completely vegetal and therefore are expected to show the high-
est vegetation cover and thus  the highest level of naturality. These
three engineering techniques therefore constitute three distinct
levels on a naturality gradient.

We selected fifteen riverbanks along six distinct French prealps
rivers belonging to the Rhone catchment area. A large and intense
prospection at territorial units for river management organizations
was performed to list enough comparable banks. Table 1  lists sites
characteristics. As altitude profoundly affects ecological commu-
nity composition, study sites were selected at a  narrow range of
270 m (between 200 and 470 m asl). Only sites between 20  and
30 m long and with an  established vegetation were chosen for anal-
ysis. All the study sites  were located in  the foothills of the French
Alps characterized by highly fragmented habitats.

2.2. Vegetation

Vegetation was assessed using the contact point method in  June
and July 2009. This method encompasses the vertical organiza-
tion of  the vegetation (tree,  shrub and herbaceous layers). Plant
species diversity and frequencies were estimated using a  2-m-long
stick with a diameter of 1  cm. Measurements were taken every
metre along three 20 m transects placed parallel to the shore one
located at the water line (Transect 1), one in the middle (Transect
2) and one at the top (Transect 3) of  the riverbank embankment
(sixty measurements per site). Vegetation was identified to the
species level using various identification keys and flora (Rameau,
1994; Lauber and Wagner, 1998; Aeschimann et  al.,  2004). Exotic
species were defined on the basis of established lists relevant to
the area (Muller et al., 2006), a  list  of  exotic invaders in  Switzerland



Fig. 1. Schematic representation of  riverbank techniques studied. (a) Civil engineering embankments: riprap protection, noted as “Mineral”. (b)  Mixed embankments

combining civil  engineering (riprap at the lower part of  the bank) and bioengineering techniques, noted as “Mixed”. (c) Completely bioengineering embankments: willow

fascines  at the lower part  of  the bank with cuttings, noted as “Vegetal”.

(Landolt and Bäumler, 2010) and a  list  established for the admin-
istrative district of  Isère (Gentiana, 2006).

2.3. Fauna

Coleopterans were identified to genus (Insecta, Coleoptera). This
order, and more specifically the Carabids, is used as proxy for
habitat diversity, hydromorphological processes and habitat health
status (Boscaini et  al., 2000; Kleinwaïchter et  al., 2003). Moreover,
morphological attributes of  Coleopterans can provide information
on their functional and trophic status (Van Looy et al., 2005). Flying
coleopterans were trapped using two Flora® “Yellow Well” traps,
located at the two extremities in the middle of the bank (tran-
sect 2) and placed at the canopy level. Traps were set in June and

July 2009 and remained in the field for seven days. Insects were
identified using a binocular microscope and appropriate refer-
ence works (Picard, 1929; Paulian, 1941; Hoffmann, 1945; Guignot,
1947; Balachowsky, 1949).

2.4. Statistical analysis

Differences in plant species and coleopteran genera richness,
and in  frequency and number of  exotic species among the three
types of development was assessed using Kruskal–Wallis tests. In
case of  a  significant main effect, paired Mann–Whitney tests were
carried out  to detect differences between each technique. Over-
all statistical risk was assessed using the Holm’s correction (Holm,
1979). An inter-class principal component analysis (PCA) (Doledec

Table 1

Characteristics and localizations of  embankments.

Site code Construction type Locality River Latitude Longitude Construction work year Altitude (m asl)

6V Vegetal Les Echelles Guiers vif 45◦26’19.15”N 5◦45’36.75”E 2005 393

35V Vegetal Villard Bonnot Vorz 45◦15’01.29”N 5◦54’01.62”E 2006 242

7V Vegetal St  Geoire en  Valdaine Ainan 45◦28’02.24”N 5◦39’40.90”E 2004 381

38V Vegetal Le  Grand Serre Galaure 45◦15’45.62”N 5◦06’29.65”E 2007 370

39V  Vegetal Cluse Arve 46◦04’13.98”N 6◦33’18.72”E 2005 470

6Mix  Mixed Les Echelles Guiers vif 45◦26’19.15”N 5◦45’36.75”E 2005 393

30Mix Mixed Grenoble Isère 45◦11’55.65”N 5◦44’02.36”E 2002 210

32Mix Mixed Gière Isère 45◦11’20.94”N 5◦47’20.62”E 2005 210

39Mix Mixed Cluse Arve 46◦04’13.98”N 6◦33’18.72”E 2005 470

40Mix  Mixed Bonneville Arve 46◦04’33.18”N 6◦24’26.63”E 2004 444

7Min Mineral St  Geoire en  Valdaine Ainan 45◦28’02.24”N 5◦39’40.90”E 2004 381

35Min Mineral Villard Bonnot Vorz 45◦15’01.29”N 5◦54’01.62”E 2006 242

37Min Mineral  Chateauneuf de Galaure Galaure 45◦14’09.59”N 4◦58’30.83”E 2004 257

38Min Mineral Le  Grand Serre Galaure 45◦15’45.62”N 5◦06’29.65”E 2007 370

39Min Mineral  Cluse Arve 46◦04’13.98”N 6◦33’18.72”E 2004 470



Fig. 2. Mean plant species numbers for each riverbank protection technique accord-

ing  to  their positions on  the bank. Different letters indicate a  statistical difference

between samples. Error bars indicate standard errors. The “All transect” bar repre-

sent  the mean of the total number of plant species found for each technique.

and Chessel, 1987) was carried out to analyze the overall plant
pattern. A Monte-Carlo test was processed to  detect significant
differences in floristic composition on structures using different
engineering techniques (Metropolis and Ulam, 1949). All tests were
performed using R statistical language (R, 2005) with ade4 package
(Thioulouse et al., 1997) for multivariate analysis.

3. Results

3.1. Vegetation

We identified 126 plant species from the 15 sampled sites.
Plant species richness differed along the naturality gradient

(Kruskal–Wallis test: p-value = 0.006, Table 2). “Vegetal” or “Mixed”
techniques having higher species plant diversity compared to
“Mineral” technique (Mann–Whitney U test with Holm correction:
p-value =  0.024 and  0.036, Table 2). There was no significant dif-
ference between mean species richness on “Vegetal” and “Mixed”
techniques although diversity tended to  be higher on the latter,
especially in the middle and at the bottom of  the bank (Fig. 2).

Floristic composition differed significantly along the naturality
gradient (Monte-Carlo test: p-value =  0.003). The distribution and
spacing of  the three spherical clusters (mn: Mineral; mx: Mixed;
v: Vegetal) on the PCA factorial map provides information on the
variability of floristic compositions (Fig.  3). However, some species
contribute more than others to the segregation of the three sets, e.g.
multiple Salicaceae species (Salix viminalis L., Salix purpurea L.,  Salix

triandra L.,  Salix fragilis L.,  Salix myrsinifolia Salisb. and Salix pen-

tandra L.)  characterized “Vegetal” technique. “Mineral” technique
was characterized by species like Buddleja davidii Franch., Humulus

lupulus L.,  Robinia pseudoacacia L., Urtica dioica L. and Parthenocis-

sus quinquefolia L.  “Mixed” technique was mainly characterized by
the presence of Cornus sanguinea L.,  Calamagrostis epigeios L., Salix

incana L.,  Viburnum opulus L. and Lonicera xylosteum L. (Fig. 4). The
inertia of  the  inter-class analysis represents 18.19% of  the total
variance among the sites. In addition, 66.16% of  the information
explained by this inter-class PCA was explained by axis 1. Salicaceae

species as  well as shrubs like C.  sanguinea and V.  opulus mainly
explained axis  1 component on the positive side of  the axis, and to
a lesser extent by species like B.  davidii and R.  pseudoacacia on the
negative side. Axis 2 expressed 33.84% of  the information. In the
upper part of  this axis, the discriminatory species were mainly: S.

viminalis, S.  purpurea and S. triandra. In the lower part, C.  sanguinea,

Fig. 3. Inter-class analysis of  vegetation on three riverbanks protection technique.

mn: Mineral; mx: Mixed; v:  Vegetal. The  distribution and spacing between the three

spherical clusters provides information on the variability of floristic compositions

between the different techniques. The size  of the ellipse provides information about

intra-technique plant species variability.

C.  epigeios, S. incana and V.  opulus were the discriminatory species
(Fig. 4).

The area of  the ellipse provided information about intra-
techniques plant species variability (Fig. 3). “Mixed” and “Vegetal”
techniques show comparable variability of  plant species composi-
tion, higher than that of  “Mineral” technique.

Fig. 4. Spatial distribution of  all species encountered on  the three riverbanks pro-

tection technique. Species codes refer  to  the first three letters of  the genius and

the  species names. Percentages of  variance observed are given on each axis. A

correspondence table is  given into the supplementary files.



Table  2

Probability values of the Kruskal-Wallis test  and Mann-Whitney test  for vegetation survey, flying coleoptera and invasive species.

Statistical tests Pair wise comparison Vegetation survey Aerian coleoptera Invasive species

Probability values Probability values Number Frequency

Kruskal–Wallis 0.006** 0.006** 0.308 0.027*

Vegetal/Mixed 0.247 0.083 0.817 1

Mann–Whitney Mixed/Mineral 0.024* 0.03* 0.363 0.063

Vegetal/Mineral 0.036* 0.038* 0.812 0.045*

* Indicate statistical significant differences (p-value <  0.05).
** Indicate highly significant differences (p-value < 0.01).

3.2. Fauna

We identified 42  distinct genera of flying Coleoptera from the
14 sampled sites (every traps have been lost for one site from the
“Vegetal” technique). Fig. 5 indicates the mean numbers of  flying
Coleoptera genera collected in  Flora® yellow traps for each three
techniques. “Vegetal” supported a  mean of  12.2 different genera
of coleopterans, “Mixed” ones supported 7.2 and “Mineral” tech-
niques supported 3.0 genera. A genius names list was included in
supplementary files.

Riverbank techniques significantly influenced the number
of coleopteran genera (Kruskal–Wallis p-value = 0.006, Table 2).
“Mixed” and “Vegetal” techniques were significantly richer than
“Mineral” technique (Mann–Whitney U test with Holm correction:
p-value =  0.03 and 0.038; Table 2).

We observed many genera associated with Salicaceae including
various saproxylic Cetonia species with larvae growing in decom-
posing wood (Cetonia aurata, Potosia cuprea bourginii). There were
also Cerambycidae species like Lamia textor, of  which the larvae
develop in  willow stumps and roots, Necydalis major in the high
cavities of  trees, and Aromia moschata, of which the larvae develop
in rotting stumps and branches. Many herbivorous coleopteran
species were identified, especially Variimorda ssp. (often seen on
Apiaceae), Hoplia farinosa (which feeds on pollen), Oedemera ssp.
(the adult of which is herbivorous and the larva xylophagous).
Some were associated with Salicaceae like C. aurata, Chaetocnema

aridula and Altica aenescens. Predatory species were also identified,
including the carnivorous Adrastus limbatus and Orchesia micans.

3.3. Exotic plant species

Although exotic plant species were sometimes found on sites
that have been constructed using bioengineering, they  were not
among the ten dominant species observed in  the study. In con-
trast, two exotic species, B.  davidii and R. pseudoacacia, belong

Fig. 5. Coleoptera mean genus numbers in yellow traps on the three riverbanks pro-

tection technique. Different letters indicate a  statistical difference between samples.

Error bars indicate standard errors.

Fig. 6. Exotic mean species numbers on the three riverbanks protection technique.

Different letters indicate a  statistical difference between samples. Error bars  indicate

standard errors.

to the ten most abundant species on “Mineral” structure (100%
of  observed exotic species). Fallopia sp. was the main genius
represented on “Mixed” structure (83% of observed exotic species)
and on “Vegetal” structure (100% of  observed exotic species). Over-
all exotic species richness varied from 1.75 to  2.2 between the
techniques (Fig.  6) and did not differ significantly between the
three techniques (Kruskal–Wallis test p-value =  0.308; Table 2).
Invasive species frequency was significantly different according to
the technique (Kruskal–Wallis test p-value = 0.027; Fig. 7), reaching
a maximum on mineral developments (42.5) compared to vegetal
(10) and mixed (13). Frequency of  invasive species was signifi-
cantly different between “Mixed” and “Mineral” techniques but
not between “Vegetal” and “Mixed” techniques because of high
variability on “Vegetal” developments (from f  =  0.34 to f =  22.71;
Mann–Whitney U  test with Holm correction: p-value =  0.063 and
0.045; Table 2). Exotic invasive species were different according to
the technique.

Fig. 7.  Exotic mean species frequencies on the three riverbanks protection tech-

nique. Different letters indicate a statistical difference between samples. Error bars

indicate  standard errors.



4. Discussion

4.1. Vegetation diversity

This survey provides a first assessment of  plant species and
Coleoptera genera richness associated with three  categories of
riverbank protection techniques. Based on field observations, we
highlight significant differences in plant diversity between con-
ventional civil engineering and bioengineering. In accordance with
our hypothesis, significantly fewer plant species were found con-
struction using on “Mineral” structures than on  either of the two
others probably due to  the substrate in “Mineral” structures that
physically limits colonization by  plants. In contrast, we observe
no significant differences in plant species richness between “Vege-
tal” and “Mixed” techniques. The higher number of  plant species
were found on “Mixed” structures compared to “Vegetal” ones may
be explained by a  large proportion of  willows from the fascines
installed at the water line which show an  important growth rate;
willows are part of fast-growing species usually used riverbank
bioengineering (Adam et  al.,  2008). This willow canopy rapidly
develops a  dense coverage that can partially inhibit colonization of
the understory by herbaceous plants. For  the “Mixed” technique,
the presence of vegetation free riprap at the bottom of the bank
restricts colonization and coverage by Salicaceae species to  the
upper part. Riprap at the interface between the aquatic environ-
ment and the first willow cuttings provide open space available for
colonization by halophytic species (Chen et  al., 2010). This lower
part constitutes a  different habitat, distinct from that offered by
the “Vegetal” technique where woody species, mostly willows, pre-
dominate. Species typically found on this “Mixed” structures are (i)
typical wetland species like Tetragonolobus maritimus, Juncus acu-

tiflorus, Carex pseudocyperus and Phragmites australis, (ii) meadow
species like Holcus mollis, (iii)  edge species and species of woodland
fringes like Ligustrum vulgare, L. xylosteum and Crataegus monog-

yna and (iv) trees from alluvial zones like Populus nigra and Populus

alba. Most of those species were not  found on “vegetal” structures
because of the  predominance of willows due to  a lack of light and
space. Finally, periodic sedimentation fills in the gaps between the
blocks and creates a loam-rich substrate favourable for coloniza-
tion by  helophytic species. Our results are therefore consistent with
other studies where the presence of some litter and loam increases
both the density and diversity of pioneer plants (Langlade and
Décamps, 1996).

4.2. Fauna diversity

Flying Coleoptera were more diverse on “Vegetal” (12.2 genera
on average) and “Mixed” (7.2 genera on average) structures which
have more complex vegetation and greater floristic diversity than
on “Mineral” (3.0 genera on average) structures. Our results are
consistent with other studies which show that the abundance of
Coleopteran species can be related to the presence of different veg-
etation strata, from grasses through bushes to  trees (Burel, 1989).
In general, insect populations––especially Carabidae––depend on
vegetation structure and heterogeneous habitats (Verdonschot
et al., 2007). Along river corridors, hotspots of  biodiversity are prin-
cipally situated in  regions where habitat diversity is  high (Tews
et al., 2004). Such habitat heterogeneity primarily reflects gradients
of disturbance, sediment grain size, moisture and fertility that are
tightly linked to river dynamics that recurrently renews the habi-
tat mosaic and drives succession. In particular small and medium
floods create more spatial variability and therefore more hetero-
geneity (Pollock et al.,  1998; Helfield et  al.,  2007).

Although “Mixed” structures harbour greater biodiversity in
terms of  plant species richness (30 species on average), more

genera of  flying Coleoptera were found on “Vegetal” structures
(12.2 genera on average). This suggests that the plant species iden-
tity has a  major impact on insect diversity. Salix species probably
attracts many nectar-feeding insects by  providing an important
nectar source available early in  the year (in January and February)
when other nectar sources are scarce (Newsholme, 1992). The
high number of coleoptera associated with Salicaceae found in  this
study converges with Newsholme’s observations. Vegetal cover
and biomass were higher on “Vegetal” structures compared to
the two others what could explain the higher coleopteran diver-
sity on “Vegetal” structures. Moreover that shore zones contain
large number of predators and scavengers including carabid bee-
tles that feed on wrack or carrion that has been deposed on  the
shore (Kleinwächter et  al.,  2003). We can assume that “Vegetal” and
“Mixed” structures support more vegetation compared to “Min-
eral” structures and can thus produce more wrack and induce
higher animal drowning mortality. In  general, shore zones are  an
important feeding zone for many species including carabid species
(Strayer and Findlay, 2010).

4.3. Invasive species

This study did not reveal any significant difference in the num-
ber  of  exotic plants between “Mineral”, “Mixed” and “Vegetal”
techniques (respectively 1.75; 2.2 and 1.8). The occurrence of
exotic plant species has been often related to  the intensity of
human activity (Pyšek et  al., 2010). All  techniques studied involve
heavy human intervention like earthmoving or digging activities.
It  can be assumed that the soils were all subject to an  equiva-
lent degree of perturbation and comparable propagule pressure
explaining why the different techniques harbour a  similar number
of exotic plant species. In contrast, this study shows that the fre-
quency of  exotic species was higher on “Mineral” structures than
on the other techniques. Exotic plants species identified in this
study are characterized by high growth rates which gave them a
competitive advantage in pioneer habitats (Call and Nilsen, 2003;
Tallent-Halsell and Watt, 2009). Moreover the relative abundance
of invasive plants could be explained by biotic interactions, notably
related to  competition (Levine et  al.,  2004). The presence of  com-
petitors on “Mixed” and “Vegetal” structures could restrict the
vigour and inhibit the propagation of  exotic species what is in par-
ticular seen on bioengineering structures; where it is very likely
that the high density of  willow restricted the performance of  exotic
species. Interestingly, B.  davidii was the only species on  “Min-
eral” technique and Fallopia sp. was the only invasive species on
“Vegetal” technique. As mineral structures could experience higher
temperatures during sunny weather than vegetalized banks, high
temperature on mineral techniques could be here hypothesized
as an  environmental filter for species sensitive for heat stress. B.

davidii is a  Mediterranean and tropical species, can be supposed
to stand high temperatures (Tallent-Halsell and Watt, 2009; Watt
et al.,  2010). Colonisable substrata available can also be an  expla-
nation; Fallopia sp. rhizomes need more space to develop and end
up in a viable organism.

4.4. Perspectives and applications

The applicative purpose of  this study is to  provide useful infor-
mation to decision-makers for planning sustainable management
strategies of  mountain riverbanks. Along small rivers, riverbank
protections should be plant instead of  self-recovery of natural veg-
etation in order to promote a  rapid vegetal cover and to  limit
exotic species invasion. The bioengineering techniques using will-
ows controls erosion, limit colonization by exotic heliophilous
species and provides food resources and habitat to entomofauna.



Salicaceae are particularly adapted to  riverbank restoration
techniques. The morphological (deep roots, dense coverage),
mechanical (flexible wood) and physiological (rapid growth, pro-
duction of  large amounts of  nectar and pollen) properties of
this genus limit erosion and ensure a  good return to naturality
(Schiechtl and Stem, 1996; Frossard and Evette, 2009). However,
such restoration techniques should always include a  large diversity
of species and growth forms. Thus, creating different plant strata
(grasses, bushes, and trees) ensures habitat diversity. River restora-
tion programme could also  aim at increasing habitat diversity. For
instance, it is possible to  promote the recruitment of helophytic
species by creating interface areas between the water and the
bank, free of bushes and trees and where sediment can be deposed
to facilitate the  accumulation of  a colonisable substrate. “Mixed”
technique with riprap at the base of  the bank and bioengineering
techniques on the  upper part represent a trade-off between vegetal
covering and habitat diversity.

Finally yet  importantly, bioengineering structures represent
a good alternative in the French Environmental Law, as  admin-
istrative procedures are simpler (Decree n◦93-743 of the law
92-3 article 10).  For civil-engineering structures, an environmen-
tal impact assessment is required what brings the administrative
delay to  6–9 months to obtain a construction permit.

5. Conclusion

The intensification of human disturbance along mountain river
lead to  a dramatic decrease in riparian biodiversity. Maintain-
ing biological continuity between small remnant refuge zones is
a priority for the conservation of  biodiversity threatened species
(Miller, 2006). The present study shows the capacities of  restora-
tion ecology and, more specifically, bioengineering, to  promote
the recovery of  coleopteran and plants of riparian forests. In
addition, “Mixed” and “Vegetal” embankment techniques enhance
connectivity between different habitats and thus contribute to the
restoration of ecological corridors. Increased connectivity between
fragmented landscape patches is  likely to increase genetic diversity
within modified landscapes (Neaves et al.,  2009).

In a further step, this study should be extended to  the aquatic
compartment. Benthic invertebrates seems to  be a  good indica-
tor of naturality with their  diversity correlated to the amount of
organic substrate (wood and roots) on the banks (Sudduth and
Meyer, 2006). The questioning could also be raised to  a  functional
analysis of the restored ecosystems (Lavorel and Garnier, 2002;
Hooper et al., 2005).
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