The Paxillus involutus (Boletales, Paxillaceae)
 complex in Europe: Genetic diversity and morphological description of the new species

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/152679
since 2016-08-10T12:12:53Z

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 118 (1), 2014, 10.1016/j.funbio.2013.10.008.

You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions:
(1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license.
(2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
(3) You must attribute this AAM in the following format: Creative Commons BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/deed.en), 10.1016/j.funbio.2013.10.008

When citing, please refer to the published version.

Link to this full text:
http://hdl.handle.net/2318/152679

The Paxillus involutus (Boletales, Paxillaceae) complex in Europe: Genetic diversity and morphological description of the new species Paxillus cuprinus, typification of P. involutus s.S., and synthesis of species boundaries

- Patricia Jargeat ${ }^{\mathrm{a}, \mathrm{b}, \text {, }}$,
- Jean-Paul Chaumeton ${ }^{\text {c }}$,
- Olivier Navaud ${ }^{\text {a, }}$,
- Alfredo Vizzini ${ }^{\text {d }}$,
- Hervé Gryta ${ }^{\mathrm{a}, \mathrm{b}}$
a Université Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Evolution et Diversité Biologique), 118 route de Narbonne, F-31062 Toulouse, France
${ }^{\text {b }}$ CNRS, Université Paul Sabatier, UMR5174 EDB, F-31062 Toulouse, France
c 74 Avenue Pierre de Montesquiou, F-32000 Auch, France
${ }^{\text {d }}$ Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università di Torino, Viale P.A. Mattioli 25, I-10125 Torino, Italy

Highlights

- Paxillus involutus is a model species for research on ectomycorrhizal fungi.
- Species boundaries in P. involutus complex were explored.
- A phylospecies is taxonomically described and named Paxillus cuprinus sp. nov.
- Level of genetic diversity correlates with morphological and ecological traits.
- Genetic divergence between species is below the 3\% cut-off used in barcoding.

Abstract

Paxillus involutus is a model species for ecological or physiological studies of ectomycorrhizal agaricomycetes. Three to six groups or species linked to it have been ecologically and morphologically distinguished. Phylogenetic studies have revealed the existence of four species in Europe: Paxillus ammoniavirescens, Paxillus obscurisporus, P. involutus, and a fourth as yet not described species. We studied 47 collections from 24 French and Italian locations, supplemented with GenBank data, in order to genetically and taxonomically delineate these species. Phylogenetic analyses of three nuclear DNA regions (rDNA internal transcribed spacer (ITS), tef1- α, and gpd)

confirmed the four European species. Morphology, culture, and ecology features allowed us to delineate species boundaries and to describe the fourth species we named Paxillus cuprinus since it turns coppery with age. As there is no existing original herbarium specimen for P. involutus, one of our collections was chosen as the epitype. The low genetic diversity found in P. cuprinus correlates with stable morphological traits (basidiome colour, ovoid-amygdaliform spores with an apical constriction) and with ecological preferences (association with Betulaceae in open and temperate areas). In contrast, P. ammoniavirescens is characterized by a high genetic diversity and a high variation of its morphological and ecological features.

Keywords

- Barcoding;
- Ecological traits;
- Morphometry;
- Ectomycorrhizal fungi;
- Taxonomy

Introduction

Members of the genus Paxillus (Agaricomycota, Boletales, Paxillaceae) are ectomycorrhizal fungi associated with various woody host plant species including hardwood and coniferous trees. They are commonly encountered in a wide range of ecosystems and habitats through the northern hemisphere.

Paxillus is a taxon of importance for academic research, as shows a bibliographic search done in early 2013 through the international database ISI Web of Science (http://www.isiknowledge.com/) among the scientific literature dealing with fungi. The item Paxillus was recorded in the title of 152 scientific publications and in the topic of at least 690 different published works originating from about 60 different countries. The species Paxillus involutus accounted for most of these records. It is in the top four of ectomycorrhizal species used as models for scientific studies that have significantly contributed to advances in the knowledge of ectomycorrhizal symbiosis functioning. The genomes of P. involutus and Paxillus rubicundulus strains have been entirely sequenced (Martin et al., 2011 and Martin and Bonito, 2012) underlining scientists' keen interest in the genus. Regarding human health, fatal outcomes due to immune haemolysis (Winkelmann et al., 1986 and Anthowiak et al., 2003) have been reported after ingestion of P. involutus. However, assessments whether P. involutus and other closely related species are harmful or not vary depending on different observers' experiences in different countries. Differences in 'toxicity’ assessments can depend on the speciation pattern. After all, there is no type reference sequence for P. involutus and the concept of this species is based on Batsch's icon (1786).

In Europe, the genus Paxillus is divided into two groups: the P. involutus complex and P. rubicundulus. The latter is mainly encountered in wetland habitats and exclusively associated with alder trees (Alnus spp., Betulaceae) (Orton 1969) whereas species of the P. involutus complex are found in more diverse habitats and associated with several tree species. Thus, host specificity is a useful trait to distinguish P. rubicundulus but species recognition within the P. involutus complex remains very difficult. Mycologists have long suspected that the name P. involutus encompasses different species (Fries, 1985, Hahn and Agerer, 1999, Jarosch and Bresinsky, 1999 and Bresinsky, 2006). Thus, mating tests performed with Swedish isolates revealed three intersterility groups (Fries
1985). Although these groups were not correlated with clear-cut morphological characters, ecological traits distinguished them: group 1 was found in forest habitats whereas groups 2 and 3 were found in city parks and gardens (Fries 1985). On the basis of a morphological study, Hahn \& Agerer (1999) recognized four European species in the P. involutus complex: P. involutus, Paxillus validus, Paxillus albidulus, and Paxillus obscurisporus. Finally, a phylogenetic study based on five genes unambiguously revealed four genetic lineages within the P. involutus complex (Hedh et al. 2008). More recently, Vellinga et al. (2012) revisited the P. involutus complex with a larger number of samples originating from a broader geographic range, including Europe and North America, and also found the same four genetic lineages. Two of these lineages corresponded to the described morphological species P. obscurisporus and Paxillus ammoniavirescens (syn. P. validus), a third one was assigned to P. involutus s.s. (Hedh et al. 2008), and the fourth lineage, referred to as PS IV and as P. involutus II by Hedh et al. (2008) and Vellinga et al. (2012) respectively, remains a phylospecies without an established correspondence with any described morphospecies. All these species can be encountered in highly diverse environments and locations and may thus be included in molecular environmental studies. Therefore it appears useful to remove any ambiguity regarding them.

Exploration of France led us to observe a large and unusual variation among Paxillus specimens and to suspect the presence of the not yet described phylospecies reported by Hedh et al. (2008) and Vellinga et al. (2012). This paper aims to describe the species corresponding to PS IV/P. involutus II and to study various aspects (genetic, morphological, and ecological) of the diversity of the P. involutus complex as exhaustively as possible, based on our collections and on data from the literature, in order to establish a framework to delineate these Paxillus species. The objectives were (1) to assign specimens to lineages and to study genetic variation within and among the lineages in order to determine a phylogenetic cut-off for species delimitation (2) to identify key differentiating morphological features between species (3) to reveal the ecological preferences of each species.

Materials and methods

Collections and ecological features

From 2008 to 2012, we obtained 47 collections of Paxillus basidiomes that matched with the macroscopic characteristics of the Paxillus involutus complex, from 23 locations in France and one in Italy (Table 1). After morphological investigations, the collected specimens were dried, except for a small amount of fresh tissues that was frozen at $-20^{\circ} \mathrm{C}$. During the collecting step, an environment type was assigned to each collection. Environment was defined as 'closed' (forest) or 'open', in natural conditions (forest edge, roadside in forest, river bank) and in urban areas (public lawn, city park including garden and car park) (Table 1). Available environmental data from the literature (Table 2) were also taken into account and considered as 'closed' environments (forest) or 'open' environments (park, lawn, pasture). As much as possible, potential ectomycorrhizal host plants present in the surroundings of the collecting places were recorded (Table 1).

Table 1.
Collections and sequenced isolates included in the study. In bold: type collection and specimens used for spore size statistical analysis.

| Can12 | | PI | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B12114 | KF26 | KF26 | KF26 |
| 0.2 | 1369 | 1508 | 1442 |

Cantaou

Can12	2012	Hautes- Pyrénée	Roadsid e in	Corylus	590	Can12 P	B12100		KF26	KF26
	2012	Pyrénée S,	forest	Corylus	m	. 3 C		1370		
		France								
		Cardeil hac,								
		Haute-		nd	491	Car10. P		KF26	KF26	KF26
		Garonn			m	C		1371	1510	1444

| Car10. | | KI | KF26 |
| :--- | :--- | :--- | :--- | KF26

Year Collec of tion samp ling		$\begin{gathered} \text { Locatio } \\ \mathrm{n} \end{gathered}$	Environ ment type	Recorded trees	Altit ude	Isolat es	$\begin{gathered} \text { Herbari } \\ \mathbf{P} \quad \text { um } \\ \text { Samber } \\ \underset{y}{\text { num }} \end{gathered}$	Accession number				
		ITS						tef	gpd			
		s-										
		Oriental										
		es,										
		France										
Eau11 ${ }^{20}$	2011		Eauzes,	River bank	Alnus, Salix	$\begin{aligned} & 145 \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{lll} \text { Eau11 } & \text { B11110 } \\ . \mathbf{1} & \text { C } & 1 \end{array}$		KF26	KF26	$\begin{aligned} & \text { KF26 } \\ & 1455 \end{aligned}$	
		Gers,	1384						1521			
		France										
						Eau11	P B11110	KF26	KF26	KF26		
						. 2	A 2	1385	1522	1456		
Hec12 2012		Hèches, Hautes-	Forest edge	Corylus	$\begin{aligned} & 630 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Hec12 } \\ & .1 \end{aligned}$	$\begin{array}{ll} \text { P } & \text { B12101 } \\ \text { O } 2 \end{array}$	$\begin{aligned} & \text { KF26 } \\ & 1386 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1523 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1457 \end{aligned}$		
		Pyrénée s ,										
		France										
Lab12 2012		Labège, Haute-	City park	Populus	$\begin{aligned} & 145 \\ & \mathrm{~m} \end{aligned}$	$\begin{array}{ll} \text { Lab12 } \\ .1 & \text { P } \end{array}$	P		KF26	KF26		
		Garonn e,							1524	1458		
		France										
Lil12 2	2012	Lille,Nord,France	City park	Chamaec yparis, Betula	40 m	$\begin{aligned} & \text { Lil12. } \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{C} \end{aligned}$	KF26	KF26	KF26		
								1387	1525	1459		
Lou12 2011		Loubers an, Gers, France	Roadsid e in forest	Quercus	$\begin{aligned} & 260 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Lou11 } \\ & .1 \end{aligned}$	$\begin{array}{ll} \text { P } & \text { B111111 } \\ \text { A } 8 \end{array}$	$\begin{aligned} & \text { KF26 } \\ & 1388 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1526 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1460 \end{aligned}$		
PM10. 2010A		Prats-de- Mollo, Pyrénée sOriental es, France	Roadsid e in forest	Betula	$\begin{aligned} & 925 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { PM10. } \\ & \text { A1 } \end{aligned}$	PCCA10.A	$\begin{aligned} & \text { KF26 } \\ & 1389 \end{aligned}$	KF261527	KF261461		
					PM10.	P CA10.A	KF26	KF26	KF26			
					A2	C 2	1390	1528	1462			
					PM10.	P CA10.A	KF26	KF26	KF26			
					A4	C 4	1391	1529	1463			
$\begin{aligned} & \text { PM10. } 2010 \\ & \text { C } \end{aligned}$			Prats-de-				$\begin{aligned} & \text { PM10. } \\ & \text { C1 } \end{aligned}$					
		Mollo,	Forest	Pinus,	992	P CA10.B		KF26	KF26	KF26		
		Pyrénée	edge	Betula	m	C 1		1392	1530	1464		
		S-										
		Oriental										

Year Collec tion of samp ling		Locatio Garonn e, France	Environ ment type	Recorded trees	Altit ude	Isolat es	$\begin{array}{cc} & \text { Herbari } \\ \mathbf{P} \quad \text { um } \\ \text { Samber number } \\ & \end{array}$	Accession number			
		ITS						$t e f$	gpd		
Sau09	2009		Saurat, Ariège, France	Forest	Abies, Picea	$\begin{gathered} 1180 \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Sau09. } \\ & 1 \end{aligned}$	PI CP09.1	$\begin{aligned} & \text { KF26 } \\ & 1401 \end{aligned}$		$\begin{aligned} & \text { KF26 } \\ & 1471 \end{aligned}$
$\begin{aligned} & \text { Sau10. } \\ & \text { F } \end{aligned}$	2010		Saurat, Ariège,	Forest	Abies	$\begin{gathered} 1180 \\ \mathrm{~m} \end{gathered}$	Sau10.	PI CP10.1	$\begin{aligned} & \text { KF26 } \\ & 1402 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1539 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1472 \end{aligned}$
		France	$\begin{aligned} & \text { Sau10. } \\ & 2 \end{aligned}$				PI CP10.2	$\begin{aligned} & \text { KF26 } \\ & 1403 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1540 \end{aligned}$		
$\begin{aligned} & \text { Sau10. } \\ & \text { R } \end{aligned}$	20102011	Saurat, Ariège, France	Roadsid e in forest	Betula, Alnus	$\begin{gathered} 1150 \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Sau10. } \\ & 3 \end{aligned}$	${ }_{\text {P }}^{\text {P }} \mathrm{CP} 10.3$	$\begin{aligned} & \text { KF26 } \\ & 1404 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1541 \end{aligned}$		
		Saurat, Ariège, France	Forest	Abies, Picea	$\begin{gathered} 1180 \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Sau11. } \\ & 1 \end{aligned}$	PI CP11.1	$\begin{aligned} & \text { KF26 } \\ & 1405 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1542 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1473 \end{aligned}$	
$\begin{aligned} & \text { Sau11. } \\ & \text { F } \end{aligned}$						$\begin{aligned} & \text { Sau11. } \\ & 3 \end{aligned}$	PI CP11.3	$\begin{aligned} & \text { KF26 } \\ & 1406 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1543 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1474 \end{aligned}$	
						$\begin{aligned} & \text { Sau11. } \\ & 6 \end{aligned}$	PI CP11.6	$\begin{aligned} & \text { KF26 } \\ & 1407 \end{aligned}$			
$\begin{aligned} & \text { Sau12. } \\ & \text { F } \end{aligned}$	2012	Saurat, Ariège, France	Forest	Abies	$\begin{gathered} 1180 \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Sau12 } \\ & .7 \end{aligned}$	PI CP12.7	$\begin{aligned} & \text { KF26 } \\ & 1408 \end{aligned}$		$\begin{aligned} & \text { KF26 } \\ & 1475 \end{aligned}$	
$\begin{aligned} & \text { Sau12. } \\ & \text { R } \end{aligned}$	2012	Saurat, Ariège, France	Roadsid e in forest	Betula	$\begin{gathered} 1150 \\ \mathrm{~m} \end{gathered}$	$\begin{aligned} & \text { Sau12 } \\ & .4 \end{aligned}$	A CP12.4	$\begin{aligned} & \text { KF26 } \\ & 1409 \end{aligned}$		$\begin{aligned} & \text { KF26 } \\ & 1476 \end{aligned}$	
$\begin{aligned} & \text { SCV0 } \\ & 9 \end{aligned}$	2009	Sainte- Croix- Volvest re, Ariège, France	Forest	Abies	$\begin{aligned} & 380 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { SCV0 } \\ & 9.1 \end{aligned}$	PI	$\begin{aligned} & \text { KF26 } \\ & 1410 \end{aligned}$		$\begin{aligned} & \text { KF26 } \\ & 1477 \end{aligned}$	
						$\begin{aligned} & \text { SCV0 } \\ & 9.5 \end{aligned}$	PI			$\begin{aligned} & \text { KF26 } \\ & 1478 \end{aligned}$	
$\begin{aligned} & \text { SCV1 } \\ & 1 \end{aligned}$	2011	Sainte- Croix- Volvest re, Ariège, France	Forest	Abies	$\begin{aligned} & 380 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { SCV1 } \\ & 1.1 \end{aligned}$	$\text { PI } \begin{aligned} & \text { B11101 } \\ & 3 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1411 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1544 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1479 \end{aligned}$	
$\begin{aligned} & \text { SVB0 } \\ & 8 \end{aligned}$	2008	SaintVincent -en-	Public lawn	Betula	$\begin{aligned} & 210 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { SVB0 } \\ & 8.1 \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{C} \end{aligned}$		$\begin{aligned} & \text { KF26 } \\ & 1545 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1480 \end{aligned}$	

Collec tion	$\begin{gathered} \text { Year } \\ \text { of } \\ \text { samp } \\ \text { ling } \end{gathered}$	Locatio n	Environ ment type	Recorded trees	Altit ude	$\begin{gathered} \text { Isolat } \\ \text { es } \end{gathered}$	$\begin{array}{cc} & \text { Herbari } \\ \mathbf{P} & \text { um } \\ \text { Samber } \\ \hline & \underline{b} \end{array}$		Accession number		
									ITS	tef	gpd
		Garonn	City park	Populus	$\begin{aligned} & 150 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Tou12 } \\ & 1 \end{aligned}$	P UPS12.		$\begin{aligned} & \text { KF26 } \\ & 1420 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1552 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1490 \end{aligned}$
		e,									
		France									
Tou12	2012	Toulous									
		e,									
		Haute-									
		Garonn									
		e,									
		France									
Ve08	2008	Le	River bank	Alnus	$\begin{aligned} & 167 \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { Ve08. } \\ & \text { 2h10 } \end{aligned}$	PR		$\begin{aligned} & \text { KF26 } \\ & 1421 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1553 \end{aligned}$	$\begin{aligned} & \text { KF26 } \\ & 1491 \end{aligned}$
		Vernet,									
		Haute-									
		Garonn									
		e,									
		France									
Vez12	2012	Vezzan	Roadsid e in forest	Ostrya, Quercus, Castanea		$\begin{aligned} & \text { Vez12 P } \\ & .1 \end{aligned}$	$\begin{aligned} & \text { TO_AV } \\ & \text { P P164, } \\ & \text { C } \\ & \text { GS1007 } \\ & 6 \end{aligned}$		$\begin{aligned} & \text { KF2 } \\ & 1422 \end{aligned}$		
		o,									
		Reggio									
		nell'Emi									
		lia, Italy									

nd: not determinated.
a
PS = phylogenetic species; PA = Paxillus ammoniavirescens; $\mathrm{PC}=$ Paxillus cuprinus;
$\mathrm{PI}=$ Paxillus involutus; $\mathrm{PO}=$ Paxillus obscurisporus; $\mathrm{PR}=$ Paxillus rubicundulus (outgroup).
b

When different of the isolate name.
Table 2.
Sequences from GenBank included in this study and information about the specimens sequenced. Type specimens are in bold.
$\begin{array}{lllllllll}\begin{array}{c}\text { Accession } \\ \text { number }\end{array} & \text { Locus PS }\end{array}$ Country $\left.\begin{array}{c}\text { Recorded Environment } \\ \text { trees }\end{array} \quad \begin{array}{c}\text { Herbarium } \\ \text { type }\end{array}\right)$

Accession number	Loc	PS ${ }^{\text {a }}$	Country	Recorded trees	Environment type	Herbarium number	Reference
EU078714	ITS	PO	Sweden	Populus, Betula	Wetland, sandfill	PAO03090701	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU078715	ITS	PO	Norway	Tilia	Garden lawn	IA04090201	$\begin{aligned} & \frac{\text { Hedh et al. }}{\underline{2008}} \end{aligned}$
EU078716	ITS	PI	Norway	Picea, Betula	Forest	AT04083001	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU078717	ITS	PI	Sweden	Betula, Quercus	Forest	SE04071201	$\frac{\overline{\text { Hedh et al. }}}{\underline{2008}}$
EU078721	ITS	PI	Canada	Betula, Populus	Forest	CanLH14503	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU078737	ITS	PI	CZ	-	-	CBS 477.89	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU078739	ITS	PI	Netherlands	-	-	CBS 591.89	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU078741	ITS	PA	Sweden	Quercus, Betula	Pasture	SE03100403	$\begin{aligned} & \frac{\text { Hedh et al. }}{\underline{2008}} \end{aligned}$
EU078742	ITS	PC	Sweden	Betula	Public lawn	PAO03090703	$\frac{\mathrm{Hedh} \text { et al. }}{\underline{2008}}$
EU078743	ITS	PC	Sweden	Populus, Corylus	Pasture	SE03100401	$\begin{aligned} & \frac{\text { Hedh et al. }}{\underline{2008}} \end{aligned}$
EU084665	ITS	PO	Germany	Tilia	-	CH 290_98	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU084666	ITS	PA	Germany	Tilia	-	CH 243_97	$\frac{\text { Hedh et al. }}{\underline{2008}}$
EU346878	ITS	PC	Germany	-	-	He1	Unpublished
FR852277	ITS	PC	Iran	-	-	Mycorrizha clone Ir1	$\begin{aligned} & \frac{\text { Bahram }}{\text { et al. } 2012} \\ & \hline \end{aligned}$
GQ389624	ITS	PC	Germany	-	-	FRA	Hrynkiewicz et al. 2010
JN197698	ITS	PC	Europe	Alnus	-	Mycorrhiza clone I016	Unpublished
JN198064	ITS	PC	Europe	Alnus	-	Mycorrhiza clone S329	Unpublished
JN661711	ITS	PA	England	Mixed forest	-	A.E. Hills $2004209 \text { (K) }$	$\begin{aligned} & \frac{\text { Vellinga }}{\text { et al. } 2012} \\ & \hline \end{aligned}$
JN661712	ITS	PA	England	Quercus	-	A.E. Hills $2005047 \text { (K) }$	$\frac{\text { Vellinga }}{\text { et al. } 2012}$
JN661713	ITS	PA	England	Salix	-	A.E. Hills $2005059 \text { (K) }$	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661714	ITS	PA	England	Tilia	Park land	A.E. Hills $2005086 \text { (K) }$	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
$\underline{\text { JN661715 }}$	ITS	PA	France		-	A.E. Hills 2007039 (K)	$\frac{\text { Vellinga }}{\text { et al. } 2012}$

Accession number	Locu		Country	Recorded trees	Environment type	Herbarium number	Reference
JN661717	ITS	PA	France	Quercus and Populus	-	A.E. Hills $2007045 \text { (K) }$	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \\ & \hline \end{aligned}$
JN661718	ITS	PA	Italy	-	-	IB1997_0980	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661719	ITS	PA	Italy	Populus	-	M. Contu (UC) s.n.	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \\ & \hline \end{aligned}$
JN661721	ITS	PIw	England	Betula	-	A.E. Hills $2005067 \text { (K) }$	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661722	ITS	PI	USA, TN	Picea	Mountain forest	TENN64458	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661723	ITS	PI	USA, MI	-	-	M. Kuo 09130703 (UC)	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661724	ITS	PI	England	-	-	S. Kelly s.n.	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661725	ITS	PC	USA, CA	Corylus, Quercus	-	D. Deshazer DD535	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661726	ITS	PC	USA, CA	Betula	-	E.C. Vellinga 3211b (UC)	Vellinga et al. 2012
JN661727	ITS	PC	USA, CA	Betula	-	E.C. Vellinga 3336 (UC)	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN661728	ITS	PC	USA, WA	Betula	Park	E.C. Vellinga s.n. (UC)	$\begin{aligned} & \text { Vellinga } \\ & \text { et al. } 2012 \end{aligned}$
JN673368	ITS	PIw	Italy	Betula, Quercus	Forest	TO BP05	$\frac{\text { Gelardi et al. }}{\underline{2011}}$
JQ283964	ITS	PO	China	-	-	JZBD2100002	Unpublished
$\underline{\text { JQ436860 }}$	gpd	PA	France (Corse)	Quercus, Pinus	Forest	Co09	Moreau et al. 2013
JQ436860	gpd	PO	France (Nord)	Populus	City park	Lille09	$\frac{\text { Moreau }}{\text { et al. } 2013}$

PS = phylogenetic species; PA = Paxillus ammoniavirescens; $\mathrm{PC}=$ Paxillus cuprinus;
PI = Paxillus involutus; PIw = Paxillus involutus white variant; $\mathrm{PO}=$ Paxillus obscurisporus.

All French voucher specimens are available at the Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier Toulouse 3 and the Italian collection is in the Torino (TO) herbarium.

Isolates and culture conditions

Pure mycelial cultures were obtained from basidiome fragments placed on solid malt extract peptone (MP) medium [$50 \mathrm{mg} \mathrm{L}^{-1} \mathrm{CaCl}_{2}, 25 \mathrm{mg} \mathrm{L}^{-1} \mathrm{NaCl}, 500 \mathrm{mg} \mathrm{L}^{-1} \mathrm{KH}_{2} \mathrm{PO}_{4}, 250 \mathrm{mg} \mathrm{L}^{-1}$ $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}, 150 \mathrm{mg} \mathrm{L}{ }^{-1} \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{mg} \mathrm{L}^{-1} \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 1 \mathrm{~g} \mathrm{~L}^{-1}$ casein peptone
(ThermoFisher, Illkirch, France), $5 \mathrm{~g} \mathrm{~L}{ }^{-1}$ malt extract (Merck, Darmstadt, Germany), $5 \mathrm{~g} \mathrm{~L}^{-1}$ glucose (Merck, Darmstadt, Germany), $0.1 \mathrm{mg} \mathrm{L}^{-1}$ thiamin (ACROS-ThermoFisher, Illkirch, France), $0.1 \mathrm{mg} \mathrm{L}^{-1} \mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 0.1 \mathrm{mg} \mathrm{L}^{-1} \mathrm{H}_{3} \mathrm{BO}_{3}, 10 \mu \mathrm{~g} \mathrm{~L}^{-1} \mathrm{MnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 3 \mu \mathrm{~g} \mathrm{~L}^{-1}$ $\mathrm{CuSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}, 3 \mu \mathrm{~g} \mathrm{~L} \mathrm{AlCl}_{3}, 3 \mu \mathrm{~g} \mathrm{~L}{ }^{-1} \mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 3 \mu \mathrm{~g} \mathrm{~L}^{-1} \mathrm{MoNa}_{2}, 1 \mu \mathrm{~g} \mathrm{~L}{ }^{-1} \mathrm{KI}, 10-15 \mathrm{~g} \mathrm{~L}{ }^{-1}$ Agar (Merck, Darmstadt, Germany)] supplemented with $100 \mathrm{mg} \mathrm{L}^{-1} \mathrm{Na}$-ampicillin, $120 \mathrm{mg} \mathrm{L}^{-1}$ SO_{4}-streptomycin, $15 \mathrm{mg} \mathrm{L}^{-1}$ tetracycline, $30 \mathrm{mg} \mathrm{L}^{-1}$ chloramphenicol, $30 \mathrm{mg} \mathrm{L}^{-1} \mathrm{SO}_{4}$-kanamycin, and $100 \mu 1 \mathrm{~L}^{-1}$ of thiabendazole lactate from a 23% stock solution. Plates were incubated at $24^{\circ} \mathrm{C}$ in the dark.

Mycelia were cultured 35 d on complete solid MP medium and on poor MP medium containing only $2.5 \mathrm{~g} \mathrm{~L}^{-1}$ glucose as the carbon source.

All cultures are available at the Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier Toulouse 3.

Morphological observations

Freshly collected basidiomes were observed and the reaction of their pileus surface to a 50% ammonia solution was tested. Spore prints were obtained and colours of fresh spore prints with sufficient spore deposits were coded according to Kornerup \& Wanscher (1967). As much as possible, comparisons of spore prints of the different species were done at the same time.

Microscopic observations were made using a Zeiss AxioLab A1 (Jena, Germany) light microscope (objectives $10 \times, 40 \times$, and $100 \times$ oil immersion) and all measurements were performed using an AxioCam Erc 5s camera with integrated software. Spore shape was defined according to the glossary of the Flora Agaricina Neerlandica (Vellinga 1988). All spore measurements were carried out on spores collected from spore prints and mounted in water. Selected quantitative spore characters including spore length (apiculus excluded), spore width, and the Q ratio between spore length and spore width were analysed in order to assess whether they were statistically different among Paxillus species and to evaluate their variation within each species. Spore sets of 289, 239, 99 , and 430 spores yielded by the spore prints of six, five, two, and eight specimens of Paxillus cuprinus, Paxillus involutus, Paxillus obscurisporus, and Paxillus ammoniavirescens respectively (Table 1) were analysed. Univariate statistics were performed to determine the mean, median, and variance values of the measurements. ANOVA tests and post hoc pairwise Tukey's tests were used to compare each spore parameter between the four species. Within each species, variations among specimens were also tested by ANOVA and post hoc pairwise Tukey's test. To meet the assumptions of ANOVA, data were transformed using Box-Cox transformations. All statistical tests were done with PAST software (Hammer et al. 2001).

The other microscopic elements were observed from dried preserved specimens, rehydrated in ammoniacal Congo red (1 \% Congo red in 12.5% ammonia solution) or in $5 \% \mathrm{KOH}$ for cystidia.

Molecular methods

Eighty-two basidiomes from the 47 collections were used for phylogenetic analyses (Table 1) and Paxillus rubicundulus Ve08.2h10, whose complete genome is sequenced (http://genome.jgipsf.org/Paxru1/Paxru1.home.html), was used as an outgroup. Fungal DNA was extracted from dried basidiomes or from fragments of basidiomes stored at $-20^{\circ} \mathrm{C}$ in Nuclei Lysis Solution (Promega, Charbonnières-les-Bains, France), using the Wizard Genomic DNA Purification kit (Promega, Charbonnières-les-Bains, France). The final pellet was resuspended in 40μ l of sterile ultra high quality (UHQ) water.

The internal transcribed spacer (ITS) rDNA, tef1- α, and $g p d$ nuclear regions were PCR-amplified as in Jargeat et al. (2010).

The PCR products were sequenced by GENOSCREEN (Lille, France) or MilleGen (Labège, France) with the same primers as for PCR amplifications. The sequences are available from the GenBank database under accession numbers KF261354-KF261553.

The ITS data set was supplemented with 58 Paxillus sequences from GenBank, mainly generated by Hedh et al. (2008) and Vellinga et al. (2012) (Table 2). They include the ITS sequences of white variants (JN661721 and JN673368), the ITS sequence of Paxillus ammoniavirescens (IB1997_0980) and Paxillus obscurisporus (CH290_98) types, the ITS sequences of the genomesequenced strain ATCC 200175, and some sequences obtained from ectomycorrhizal tips. One tef and two gpd Paxillus sequences from GenBank were also included in the analyses (Table 2).

All our references to species from the literature refer to collections that are recognized by sequence data.

Phylogenetic and statistical analyses

Sequence chromatograms were manually checked to identify heterozygous nucleotide position and sequences were manually corrected using BioEdit software (Hall 1999). Multiple sequence alignments were conducted for the three nuclear regions ITS rDNA, gpd, and tef in SeaView v4.0 (Galtier et al. 1996) using MUSCLE v3.7 (Edgar 2004). The three alignments were concatenated into a single sequence alignment of 1686 bp .

Alignments are available on treebase.org under the following link http://purl.org/phylo/treebase/phylows/study/TB2:S14414.

The evolutionary model was selected by using jModelTest-2.1.4 (Darriba et al. 2012). Phylogenetic analyses were performed using the Bayesian inference with MrBayes v3.2 (Ronquist et al. 2012), with six Markov Chain Monte Carlo (MCMC) ran simultaneously for 2000000 generations (tef and gpd) or 3000000 generations (ITS, concatenated) under GTR + gamma evolutionary model. Trees were saved every 500 generations and the first 25% were discarded as 'burn-in'. For the remaining trees, a majority rule consensus tree was computed to obtain estimates for Bayesian posterior probabilities. Phylogenetic trees were visualized and edited with FigTree v1.4.0 available at http://tree.bio.ed.ac.uk/software/figtree/.

The topological congruence between the trees obtained from the three loci was tested by the maximum agreement subtree (MAST) method using the online calculator of congruence index $I_{\text {cong }}$ (De Vienne et al. 2007) available at http://max2.ese.u-psud.fr/icong/index.help.html.

In order to use the information in the heterozygous nucleotide position and thus calculate more accurate estimates of molecular ITS variations among all samples (our collections and sequences from GenBank), a haplotype data set was constructed with homozygous sequences and sequences for which heterozygosity could be resolved without cloning, i.e. with only one heterozygous position. For example, in a DNA sequence ('genotype') containing an ' R ' ($=A / G$), the two resulting sequence haplotypes will include either an 'A' or a ' G '. Sequences with more than one heterozygous position were not taken into account. Estimates of molecular variation [nucleotide diversity (π) and nucleotide divergence (K) calculated using Juke-Cantor distance] were calculated in DnaSP 5.10.01 (Librado \& Rozas 2009). An estimation of genetic diversity was also obtained by analysing the phylogenetically informative positions as well as private mutations (mutations present
in only one sequence of the overall data set) with DIVEIN (Deng et al. 2010) http://indra.mullins.microbiol.washington.edu/DIVEIN/.

Results

Phylogenetic analyses and genetic diversity

Partial 507-bp ITS sequences were generated from 69 samples, 522-bp tef1- α sequences from 62 samples, and 646-bp gpd sequences from 69 samples, all including two Paxillus rubicundulus samples. The ITS, tef, and gpd phylogenies support four clades in the Paxillus involutus complex and P. rubicundulus is placed as an outgroup (Figs 1 and 2). According to type sequences, two of these phylogenetic species were assigned to Paxillus ammoniavirescens and Paxillus obscurisporus. A third branch, including the genome-sequenced strain ATCC 200175 (AY585913), P. involutus f. eburneus (JN673368), and an English whitish collection (JN661721), represented P. involutus. The fourth phylospecies is called Paxillus cuprinus hereafter.

Fig 1.
Phylogeny of Paxillus involutus and allies derived from the ITS data set using Bayesian analyses. The Bayesian PPs above 0.5 are shown above branches. The tree was rooted using sequences from P. rubicundulus. The scale shows the expected number of changes per nucleotide. Four different phylogenetically species are identified: $\mathrm{PA}=P$.
ammoniavirescens, $\mathrm{PC}=P$. cuprinus, $\mathrm{PI}=P$. involutus, $\mathrm{PO}=P$. obscurisporus. All strains and gene accession numbers are presented in Tables 1 and 2 .

Fig 2.
Phylogenies of Paxillus involutus and allies derived from the tef1- α (A), gpd (B), and concatenated sequences (C) using Bayesian analyses. The Bayesian PPs above 0.5 are shown above branches. The tree was rooted using sequences from P. rubicundulus. The scale shows the expected number of changes per nucleotide. Four different phylogenetically species are identified: $\mathrm{PA}=P$. ammoniavirescens, $\mathrm{PC}=P$. cuprinus, $\mathrm{PI}=P$. involutus, PO $=P$. obscurisporus. All strains and gene accession numbers are presented in Tables 1 and 2 .

In the ITS tree (Fig 1), P. cuprinus and P. involutus on the one hand and P. ammoniavirescens and P. obscurisporus on the other hand are sister-groups. The tef tree (Fig 2A) reveals four wellsupported branches where P. ammoniavirescens, P. obscurisporus, and P. involutus are clustered while P. cuprinus is more distant. In the gpd tree (Fig 2B), P. involutus is the most distant while P. cuprinus and P. obscurisporus are related. However, nodes are weakly supported and congruence of the three trees was confirmed ($I_{\text {cong }}=2.95-3, P$ value $=2.45 \mathrm{E}^{-17}-9.47 \mathrm{E}^{-16}$). The tree obtained with the three concatenated genes (Fig 2C) is similar to the ITS tree. Each specimen was consistently assigned to the same phylogenetic species.

As most of the ITS sequences contained only one heterozygous position, it was possible to generate a haplophase data set, with sequences from this study and from GenBank. The numbers of ITS haplotypes were four for P. cuprinus, seven for P. involutus, nine for P. ammoniavirescens, and five for P. obscurisporus. ITS nucleotide diversity (π), which represents sequence variation, ranged between 0.008 (PA-PO) and 0.023 (PA-PC) at the intergroup level but ranged between 0.001 (P. cuprinus) and 0.003 (P. ammoniavirescens) at the intragroup level (Table 3).

Table 3.
Statistical data calculated at the intra and interspecific levels for the four phylogenetic species ($\mathrm{PA}=P$. ammoniavirescens; $\mathrm{PC}=P$. cuprinus; $\mathrm{PI}=P$. involutus; $\mathrm{PO}=P$.
obscurisporus) with the ITS haplophase data set.

	Nb of studied location (this study + literature)	Number of study + literature)	Nucleotide diversity $\boldsymbol{\pi} \boldsymbol{\pi}$	Nucleotide divergence $\boldsymbol{K}(\%)$
P.	$13+13$	$20+11$	0.003	0.26
ammoniavirescens		$32+10$	0.002	0.2
P. involutus	$8+10$	$25+14$	0.001	0.12
P. cuprinus	$11+12$	$3+15$	0.002	0.15
P. obscurisporus	$2+17$	72	0.018	3.7
PA-PI		69	0.023	4.7
PA-PC	48	0.008	1.6	
PA-PO	81	0.013	2.5	
PI-PC	60	0.013	3	
PI-PO	57	0.015	3.5	
PC-PO				

Genetic diversity analysis of the ITS data set (Table 3) indicated that P. cuprinus ITS sequences were more similar to P. involutus ITS sequences ($K=2.5 \%$) and P. ammoniavirescens ITS
sequences were highly similar to P. obscurisporus ITS sequences ($K=1.6 \%$). When we compared more distant species (PA-PI, PA-PC, PI-PO, PC-PO), nucleotide divergence K was always higher than 3%. At the intraspecific level, nucleotide divergence ranged between 0.12% (P. cuprinus) and 0.26 \% (P. ammoniavirescens).

The gpd and tef fragments contained many heterozygous positions (2-5) and it was not possible to deduce the different alleles. However the number of polymorphic informative sites and the total number of variable sites allowed us to estimate genetic diversity. The lowest variability was obtained for P. cuprinus (mean values of 2.67 and 4.67) and the highest variability was observed for P. ammoniavirescens (mean values of 8.67 and 14.00) (Table 4).

Table 4.
Number of polymorphic informative sites and total number of variable sites (including indels and single variations).

	Number of sequences ${ }^{\text {a }}$			Number of polymorphic informative sites				Total number of variable sites			
	ITS	tef	gpd	ITS	tef	gpd	Mean	ITS	f	gpd	Mean
P. ammoniavirescens	32	18	27	5	7	14	8.67	11	8	23	14.00
P. involutus	35	20	17	3	4	2	3.00	5	7	9	7.00
P. cuprinus	34	20	22	1	3	4	2.67	4	3	7	4.67
P. obscurisporus	19	3	3	2	nd	nd	nd		6	7	5.67

nd: not determined.
a

Including GenBank sequences.

Macroscopic features and chemical reactions

Once all the specimens were assigned to a phylospecies, taxonomic characters were examined. Based on field observations of fresh specimens, general aspect distinguished two groups: Paxillus obscurisporus and in some cases Paxillus ammoniavirescens (Tou08, Tou11.A, Tou12, Auz08, Pou09, Ram10 collections) had robust basidiomes, a short stipe and grew in dense clusters whereas some other P. ammoniavirescens collections (Cer09, Eau11, ALB08, Sau12.R), Paxillus involutus and Paxillus cuprinus were characterized by less massive basidiomes with a more slender stipe, growing in groups of separated basidiomes or up to three connate basidiomes (Fig 3B-D). More individual characters revealed that P. cuprinus, P. involutus, and P. obscurisporus displayed duller colours than P. ammoniavirescens. This species typically has a yellow shade on the whole basidiome and its pileus is often brightly coloured, yellow-brown to orange-brown or fulvous. Paxillus cuprinus had an olivaceous shade when young and then turned more brownish and finally coppery to reddish brown (Fig 3A-C). This colour change was particularly intense in dry weather (Fig 3B). At first, P. obscurisporus was lead-grey to ochre-grey and sometimes it also turned coppery with age. Paxillus involutus had a broader range of colours, mostly ochraceous brown, grey-brown or rusty brown, more rarely with a conspicuous olivaceous shade. All taxa had a more or less enrolled margin (Fig 3D and E for P. cuprinus). In contrast, P. involutus, especially young
specimens, was the only one that frequently had a broad umbonate pileus. At maturity, outwards adpressed radiating fibrillose squamules sometimes occurred on the pileus of the four species, although more rarely in P. involutus. The viscosity of the pileus surface was especially important in P ammoniavirescens which was even glutinous in a few cases. The other three taxa were moderately slimy in wet weather. A fleeting green reaction to ammonia was observed for the pileus surface of P. ammoniavirescens basidiomes, especially when the pileus was slimy. For the other three species, the reaction yielded a reddish brown to dark grey colour.

Fig 3.

Various aspects of Paxillus cuprinus basidiomes collected in France. (A) Holotype Cas10.3 from Castanet-Tolosan, (Haute-Garonne), 2010; (B) Cas12 collection from CastanetTolosan, (Haute-Garonne), 2012; (C) Mature basidiomes from PM10.A collection from Prats-de-Mollo, (Pyrénées-Orientales), 2010; (D) Young basidiomes from collection Tou11 from Toulouse, (Haute-Garonne), 2011; (E and F) Young basidiome from collection Eau11
from Eauzes, (Gers), 2011. The small young specimen is Gyrodon lividus. Scale bars $=2 \mathrm{~cm}$.

The flesh of the four species was yellowish at first and then turned brown or rusty brown. However, the speed and the intensity of this change varied depending on the collection and the age of the specimens (it was more obvious with young specimens). In P. cuprinus, the flesh immediately and intensively changed to reddish brown after cutting or wounding (see the margin of the pileus and gills of the young specimen, Fig 3D).

Spore prints of P. ammoniavirescens were usually ochraceous brown, often clearly greenish tinged (5D6-5E7). Paxillus cuprinus spore deposits usually displayed much darker shades, more reddish and without a distinctly greenish tinge (5E7-6E6-6E7). Paxillus involutus spore prints had an intermediate colour range (5E6-5E7-6E6) but the colour was mostly much more reddish compared with P. ammoniavirescens. Lastly, P. obscurisporus was characterized by deep reddish brown spore prints (7E6-7E7 fading to 5E6-5E7 over time). Whatever the species, spore print colour gradually changed during storage and turned to ochraceous brown (5D6 or 5E7).

Microscopic features and spore size statistical analysis

Twenty-one spore prints were examined to compare spore morphology across species. Paxillus cuprinus spores were typically ovoid or amygdaloid with a frequent slight depression on their dorsal side near the apex and therefore showed a slight apical constriction (Fig 4A). Paxillus involutus spores were generally ovoid-amygdaliform, with sometimes the same dorsal depression as P. cuprinus spores. Paxillus ammoniavirescens spore shapes varied widely depending on the specimens. They were recorded as broadly ellipsoid as in isolate Eau11.2 or almost oblong (isolate Cas12.1). A few spores were found rather amygdaliform (Car12.1) or, as in isolate Pun11.1, some spores were subphaseoliform in side view and others displayed a supraapicular depression. Paxillus obscurisporus exhibited broadly elliptical spores with an occasional amygdaliform trend, especially in the largest spores. Spore length values were significantly higher for P. cuprinus than for the other three species (Table 5; Fig 5). However, P. involutus specimen SCV11.1 and P. ammoniavirescens Cas12.1 also had relatively long spores and overlapped with P. cuprinus (Fig 5). No significant difference in spore width was found between P. cuprinus and P. obscurisporus (Table 5; Fig 5). The spores of both these species were significantly wider than P. involutus spores, while P. ammoniavirescens spores were the narrowest (Table 5; Fig 5), even if the differences were tenuous. There was no significant difference in the spore length/spore width Q ratios of P. cuprinus, P. involutus, and P. ammoniavirescens but the Q ratio of P. obscurisporus spores was significantly lower (Table 5; Fig 5). The lowest variance for the three parameters was always found for P. cuprinus (Fig 5).

Fig 4.
Microscopic features of Paxillus cuprinus observed on the holotype specimen Cas10.3. (A)
Basidiospores; (B) Basidia; (C) Pleurocystidia; (D) Pileipellis (cutis). Scale bar $=5 \mu \mathrm{~m}$.

Table 5.
Sizes of microscopical elements.

	Spore size ($\mu \mathrm{m}$)	Spore length/width Q ratio	Cystidia size ($\mu \mathrm{m}$)	Hyphae diameter ($\mu \mathrm{m}$)
P. cuprinus	$\begin{aligned} & (7.0) 7.4- \\ & 9.4(11.5) \times(4.5) 4.9- \\ & 5.7(6.2) n=289 \end{aligned}$	$\begin{aligned} & (1.30) 1.41- \\ & 1.75(2.13) \\ & n=289 \end{aligned}$	$\begin{aligned} & (47) 51- \\ & 123(137) \times(7) 8- \\ & 16(19) n=73 \end{aligned}$	$\begin{aligned} & (4.0) 4.6- \\ & 7.7(8.1) \\ & n=70 \end{aligned}$
P. involutus	$\begin{aligned} & (6.4) 6.9- \\ & 9.2(10.6) \times(4.3) 4.5- \\ & 5.6(6.0) n=239 \end{aligned}$	$\begin{aligned} & (1.32) 1.39- \\ & 1.80(1.98) \\ & n=239 \end{aligned}$	$\begin{aligned} & (43) 48-86 \\ & (88) \times(8) 9-14(15) \\ & n=48 \end{aligned}$	$\begin{aligned} & (5.1) 5.2- \\ & 8.2(8.4) \\ & n=68 \end{aligned}$
P. ammoniavirescens	$\begin{aligned} & (6.3) 6.6- \\ & 9.4(11.6) \times(4.0) 4.4- \\ & 5.4(6.3) n=430 \end{aligned}$	$\begin{aligned} & (1.30) 1.40- \\ & 1.80(1.96) \\ & n=430 \end{aligned}$	$\begin{aligned} & (41) 50-95 \\ & (108) \times(6) 9- \\ & 17(19) n=51 \end{aligned}$	$\begin{aligned} & (4.6) 5.2- \\ & 8.8(9.7) \\ & n=58 \end{aligned}$
P. obscurisporus	$\begin{aligned} & (6.5) 6.9- \\ & 8.9(10.2) \times(4.8) 5.0- \\ & 6.2(6.5) n=99 \end{aligned}$	$\begin{aligned} & (1.24) 1.31- \\ & 1.68(1.90) \\ & n=99 \end{aligned}$	$\begin{aligned} & (37) 51-91 \\ & (99) \times(7) 10- \\ & 19(21) n=56 \end{aligned}$	$\begin{aligned} & (4.9) 5.2- \\ & 8.2(8.9) \\ & n=56 \end{aligned}$

Fig 5.
Comparison of three spore parameters (length; width, and length-over-width ratio) among the four species P. cuprinus (PC), P. involutus (PI), P. obscurisporus (PO), and P. ammoniavirescens (PA). Large white boxplots correspond to data compilation at the species level. Each box contains 50% of the data (interquartile range). White diamonds (large boxplots) indicate the 5th and 95th percentiles and vertical lines delineate the range of values. Horizontal lines and x symbols within boxes correspond to the median and mean values respectively. Bold italic numbers indicate variance of each parameter within each
species. Capital letters indicate significant differences ($P<0.05$) between species for that particular parameter (ANOVA and Tukey's post hoc test). Small grey boxplots over shaded areas detail values recorded for each specimen of each species. For each parameter and each species, results of 'among specimens' comparisons are obtained from the F values provided by ANOVA analyses (${ }^{*}, P<0.0001$). Small letters indicate differences ($P<0.05$) among specimens within each species as determined through Tukey's post hoc tests following ANOVA. Box-Cox-transformed data were used to perform all ANOVA analyses whereas untransformed values are presented in the figure.

Significant variations of each parameter were recorded across individuals of each species ($P<0.0001$ for all F values of ANOVA; Fig 5) underlining interindividual differences within each species. Whatever the parameter, the highest interindividual variation estimated with F values from ANOVA analysis was found for P. ammoniavirescens (Fig 5). The lowest spore length variations $\left(F_{5,283}=10.00\right.$; Fig 5) and Q ratio ($F_{5,283}=22.4$; Fig 5) were found among P. cuprinus individuals and the lowest spore width variations among P. obscurisporus individuals ($F_{1,97}=4.77$; Fig 5), but only two specimens were studied for this species. Spore width variation among P. cuprinus individuals was also low ($F_{5,283}=7.45$). For each spore parameter, the highest number of significant differences was recorded when comparing P. ammoniavirescens individuals together whereas the lowest number was observed among P. cuprinus individuals (from pairwise post hoc Tukey's test, Fig 5). Along with F values, this result suggests that P. cuprinus exhibited the lowest interindividual variability in spore parameters and P. ammoniavirescens the highest.

Hymenial cystidia were found in all four species. Cheilo and pleurocystidia were very much alike and their sizes were grouped together. The smallest cystidia were observed in P. involutus (Table 5). They were fairly short and broad in P. ammoniavirescens and slightly larger in P. cuprinus and P. obscurisporus (Table 5). The pileipellis is a cutis to an intricate trichoderm and hypha diameter was similar in all four species (Table 5). A gelatinous matrix was occasionally observed in all four species but the pileipellis was usually clearly gelatinized (ixocutis to ixotrichoderm) in P. ammoniavirescens, in relation to the viscosity of the pileus surface. The superficial hyphae of the rhizomorphs were finely dotted by microcrystals in P. cuprinus, P. involutus, and P. obscurisporus and incrusted by crystals up to $2.5 \mu \mathrm{~m}$ in P. ammoniavirescens.

Cultural features

Pure mycelial cultures were obtained from fresh basidiomes of Paxillus cuprinus (13 isolates), Paxillus involutus (ten isolates), and Paxillus ammoniavirescens (32 isolates out of which 19 were studied). Four to five plates per isolate were examined and mycelium diameter was measured. Paxillus cuprinus mycelia (Fig 6) were aerial grey-beige, with brown droplets. They had a limited growth ($3.16 \mathrm{~cm} \pm 0.77$ in diameter, $n=60$) that stopped after 1 m of incubation. Mycelia cultivated on rich medium containing high carbon quantities (glucose, malt extract, casein) were more compact and generated a brown staining of the medium due to a high production of pigments. Paxillus involutus cultures (Fig 6) were characterized by a limited growth ($3.71 \mathrm{~cm} \pm 0.93, n=40$), pigment production on rich medium, and by the absence of brown droplets. On the contrary, most of the P. ammoniavirescens isolates grew quickly, covered the entire medium within 3-4 weeks (average diameter $=4.61 \mathrm{~cm} \pm 1.09, n=81$), with thick aerial mycelium like cotton wool, brown droplets, and sclerotia, on rich medium as well as on poor medium (Fig 6).

Fig 6.
Mycelia of Paxillus cuprinus (PC), P. involutus (PI), and P. ammoniavirescens (PA) cultivated 35 d on complete MP medium $(\mathrm{C}+$) and on poor MP medium $(\mathrm{C}-)$. When cultivated on $\mathrm{C}+$ medium, the three species produce brown pigments diffusing in the substrat and beading on the mycelium. Paxillus ammoniavirescens has the highest growth rate on both media.

Ecological preferences and geographic distribution

Ecological preferences of each species were examined through environmental conditions recorded when the specimens were collected (Table 1) and environmental data provided in the literature (Table 2).

Sixteen of our Paxillus cuprinus collections were found over a large geographic scale in France (Table 1): in southern France (Ariège, Haute-Garonne, Gers, Hautes-Pyrénées, Pyrénées-Orientales, and Tarn) as well as in northern (Nord) and in eastern (Saône-et-Loire) France. One collection (Vez12) came from North Italy (Emilia Romagna). Literature data indicate that P. cuprinus is also present in Germany, Sweden, North America, and Iran (Table 2). All our collections were found in the vicinity of Betulaceae (Betula, Alnus, Corylus or Ostrya) (Table 1) and it was also the case for specimens or mycorrhizal tips recorded from the literature (Table 2). Basidiomes of P. cuprinus were associated to planted Betula in urban areas such as city parks or public lawns or with spontaneous Betulaceae in open natural environments such as roadsides in forests and river banks (Table 1) or pastures and unmanaged lawns (Table 2). Our 14 collections of Paxillus involutus were found in eight locations in the south-west of France, more than 400 m above sea level (Table 1), but P. involutus is also present in the north of Europe (Great Britain, the Netherlands, Norway, and Sweden) and in North America (Canada and the USA) (Table 2). It was found associated to coniferous trees (Picea, Abies, and Pinus) and deciduous trees (Betula, Quercus, and Fagus) but always in forests (Tables 1 and 2).

The 17 Paxillus ammoniavirescens collections came from 13 locations in the south of France (Table 1) and it was also recorded in Sweden, Germany, England, and Italy (Table 2). It was
collected mainly under deciduous trees (Populus, Betula, Salix, and Quercus) but also under coniferous trees (Cedrus and Pinus). It usually grows in open environments (Table 1), in urban areas, and in more natural environments (forest edges, forest roadsides, and river banks).

We found only two collections of Paxillus obscurisporus in the south-west of France (Table 1), in mountain locations (630 and 1050 m altitudes) but it is clearly present in the north of Europe (North of France, Sweden, Norway, and Germany) and it has also been reported in China, from mycorrhizal tips (DQ647827, DQ657629, JQ283964) (Table 2). Our collections (Table 1) and specimens from the literature (Table 2) were found associated to deciduous trees (Betula, Corylus, Tilia, Populus, and Quercus) in open natural (forest edge) or urban (garden lawn, city park) areas.

The species do not exclude each other. Thus, P. cuprinus can be found in the same location as the other species. In Eauze, Toulouse, and Castanet-Tolosan, it was found in the vicinity of P. ammoniavirescens and in the forests of Prats-de-Mollo, Saurat, Cardeilhac, Cantaous, and Arfons, not far from P. involutus.

Taxonomy

Paxillus involutus (Batsch: Fr.) Fr., Epicrisis Systematis Mycologici317 (1838) [MB\#191172].
Synonyms: Agaricus contiguus Bull., Herbier de la France5: t. 240 (1785) [MB\#201927].
Agaricus involutus Batsch, Elenchus fungorum. Continuatio prima39 t. 13: 61 (1786) [MB\#229635].

Agaricus involutus Batsch: Fr., Systema mycologicum1: 271 (1821).
Omphalia involuta (Batsch) Gray, A natural arrangement of British plants 1: 611 (1821) [MB\#486483].

Rhymovis involuta (Batsch) Rabenh., Deutschlands Kryptogamenflora1: 453 (1844) [MB\#508583]
Typus: Germany, illustration in Elenchus fungorum - Continuatio prima (Batsch 1786:
Table XIII, Fig 61a-e, iconotype, lectotypus hic designatus).
http://www.librifungorum.org/Image.asp?ItemID=2\&ImageFileName=IMG_5529.jpg.
Batsch's illustration does not really fit the actual concept of P. involutus (Hahn \& Agerer 1999) and perhaps depicts Paxillus obscurisporus as in the protologue Batsch explained that the specimens are especially large and thick. In any case, we chose here collection Can12.1_B121140 as an epitype in order to avoid more disturbances in this species complex.

Epitype: France. Hautes-Pyrénées (65), Cantaous, alt. approx. 590 m, in group of separate basidiomes under Picea abies in forest, leg J-P Chaumeton 17 November 2012, Can12.1_B121140. TL127-0001.

Pileus: 4-9(12) cm diam. Convex then expanding, deeply depressed in mature specimen, with broad umbo in central depression, more or less viscid when wet, sticky by drying, with inrolled margin, felted and faintly tuberculose at first; surface colour grey-brown to clay-buff more brownish and rusty or ochraceous stained with age. Lamellae: unequal, crowded, deeply decurrent, forked, not or weakly anastomosing on stipe, pale yellow, red-brown when injured. Stipe: well developed, 4$8 \times 0.9-1.8 \mathrm{~cm}$, often curved downwards, almost cylindrical, pale at first staining reddish brown
from the base; rhizomorphs present. Flesh: quickly reddish brown in the stipe, less reactive and slowly saffron yellowish in the cap, smell strong and fruity. Chemical reaction: pileus surface reddish brown with 50% ammonia solution. Fresh spore deposit: ochraceous only slightly reddish, 5E6-5E7. Spores: (6.4)6.9-8.8(9.8) $\times(4.6) 4.7-5.4(5.6) \mu \mathrm{m}(n=34)$, elliptical to amygdaliform; apical constriction rare and quite indistinct; Q median 1.52. Hymenial cystidia: relatively small, $50-$ $73 \times 9-14 \mu \mathrm{~m}$, mostly subcylindrical to fusiform; cheilocystidia frequent; pleurocystidia uncommon. Pileipellis: a cutis to a trichoderm only slightly gelatinized, hyphae $4.8-7 \mu \mathrm{~m}$ wide. Clamp-connections: present throughout.

Ecology and distribution

In groups, always in forest, associated to a wide range of host plant species: Picea, Abies, Pinus, Betula, Fagus, and Quercus. Autumn. Present all over Europe (France, Belgium, Great Britain, The Netherlands, Sweden, Norway, Czech Republic) and in North America (Canada and the USA).

Paxillus cuprinus Jargeat, Gryta, Chaumeton \& Vizzini, sp. nov.
MycoBank accession number: MB804772.
Paxillus involutus II (Vellinga et al. 2012).
P. involutus group IV (Hedh et al. 2008).

Fig 3, Fig 4 and Fig 5.

Etymology: from Latin cuprinus , derived from Kv' $\pi \rho \imath v o s$, of red copper, pileus surface becoming coppery with age.

Holotype: France, Haute-Garonne 31, Castanet-Tolosan, alt. approx. 170 m, under Betula pendula in city park, leg P. Jargeat, O. Navaud, H. Gryta, 30 November 2010. TL127-0002.

Description

Pileus: (3)5-12(25) cm in diam. At first, subhemispheric, convex to plan-convex then expanding with slightly depressed centre, sometimes more deeply in old specimens, without umbo; surface covered by a faint whitish pruina on the very young specimens, felted and matt when young, slightly sticky in wet weather, glabrous and shiny as leather when dry and with age, frequently with radiating adpressed darker fibrils outwards and, except towards the margin, often areolate or cracked, especially in dry or exposed sites; margin strongly inrolled and felted-tomentose at first, smooth and weakly or not inrolled at maturity, straight or more or less lobate; surface colour greybrown with an olivaceous shade and some whitish areas, soon becoming ochraceous brown, claybuff or yellowish olivaceous, finally more uniformly coppery brown or reddish brown, rarely with a vinaceous cast.

Lamellae: unequal, narrow, fairly crowded to crowded (6-13 per cm, two lamellae intermixed by 13 lamellulae), decurrent, removable from pileus, often anastomosing and forked towards the stipe; colour at first pale, yellowish white then rusty brown darkening to rusty reddish or reddish coppery with age, staining red-brown when bruised more intensively in young specimens; edges quite obtuse, slightly undulated, paler than faces.

Stipe: 2.7-5 $\times 0.5-2.5 \mathrm{~cm}$, rather short in comparison to the pileus diameter, stout but sometimes more slender even very thin, mostly central, cylindric or slightly tapering downwards, dry; whitish background colour, more or less pale pink reddish marbled, often with a distinct light yellow zone at the top, staining reddish brown from the base upward later striated in brown, basal mycelium fairly copious with bundles of pale brown to whitish rhizomorphs mixed with soil.

Flesh: rather thick, firm but soon softened, yellowish in the stipe and in the pileus above the very quickly reddening gills, mainly in young specimens, finally wholly reddish brown to dark-red in just a few hours; smell distinct, fruity; taste mild or slightly bitter.

Chemical reaction: reddish brown to purplish brown with 50% ammonia solution on pileus surface.
Spore deposit: ochraceous with clearly reddish shade or chocolate brown turning gradually to ochraceous brown more or less olivaceous over time (5E7-6E6-6E7 fading to 5D6).

Spores: holotypus: (7.0)7.4-8.8(9.7) $\times(4.9) 4.9-5.9(6.1) \mu \mathrm{m}(n=44)$ with median $8.1 \times 5.4 \mu \mathrm{~m} ; Q$ ratio (1.33)1.39-1.64(1.66) with median 1.50. Based on six collections ($n=289$): (7.0)7.2$9.6(11.5) \times(4.5) 4.8-5.9(6.2) \mu \mathrm{m}$ with median $8.0-8.6 \times 5.2-5.5 \mu \mathrm{~m} ; Q$ ratio (1.30)1.41-1.75(2.13) with median 1.50-1.63.

Ovoid in frontal view, ovoid to amygdaloid with mostly clearly acute apex in side view and often with a slight depression on the abaxial side towards the top, mostly uniguttulate, yellow-brown, slightly tawny in Melzer's reagent, smooth, apiculus rather short.

Basidia: (22)27-46(47) $\times 8-10(11) \mu \mathrm{m}(n=23)$; cylindro-clavate with rather stout sterigmata, fourspored, more rarely two or one-spored.

Hymenial cystidia: (47)51-123(137) $\times(7) 8-16(19) ~ \mu \mathrm{~m}$, pleuro and cheilocystidia quite similar, mostly clearly distinct from the basidia, of varied shape and size; cylindrical-tapered, ventricose with a long neck, irregularly flexuose to lageniform with acute to subcapitate apex, at times also broadly fusiform to saccate but more often relatively narrow, abruptly constricted to the connection with basal hyphae, hyaline or with a brown content sometimes only on the upper part, with no incrustations in $5 \% \mathrm{KOH}$. Hyaline or brownish cystidioid elements, clearly distinct from the basidioles, versiform, similar to caulocystidia, but smaller (29-49 $\times 4-8 \mu \mathrm{~m}$), are sometimes found on the edge of lamellae.

Hymenophoral trama: subregular, slightly divergent, mediostratum with hyaline to brown pigmented hyphae, 5.5-17.5 $\mu \mathrm{m}$ wide.

Pileipellis: a cutis to an intricate trichoderm not distinctly or poorly gelatinized with septate, sometimes fasciculate hyphae, (4)4.6-7.7(8.1) $\mu \mathrm{m}$ wide, with brown intracellular pigment and free terminal elements poorly differentiated.

Stipitipellis: superficial hyphae brown yellowish, 3.9-9.1 $\mu \mathrm{m}$ wide, caulocystidia smaller than hymenial cystidia, (44-72 $\times 8-9 \mu \mathrm{~m}$), versiform, cylindrical-tapered, cylindrical-flexuose, capitate, sometimes in part thick-walled, hyaline to brownish. Fertile caulohymenium is present on the upper part of stipe.

Stipititrama: made up of $10-32 \mu \mathrm{~m}$ hyphae wide.

Rhizomorphs: superficial layer with narrow hyphae $2.8-5.2 \mu \mathrm{~m}$ wide, dotted with microcrystals, central part with larger 8.8-17.5 $\mu \mathrm{m}$ thick-walled hyphae wide.

Clamp-connections: present at all septa.

Ecology and distribution

In groups or sometimes by two or three connate basidiomes, always in bright places: lawns, parks, river banks, forest edges, and along paths. Growing in association with Betulaceae (Betula, Alnus, Corylus, Ostrya) both in urban areas and in more natural sites. Late summer and autumn.
Widespread and probably fairly common in Europe (France, Germany, Italy, Sweden), also present in Asia (Iran) and North America (introduced in Northwest USA, California, Washington).

Additional specimens examined: France: Haute-Garonne 31, Castanet-Tolosan, alt. approx. 170 m, under Betula pendula in city park, leg O. Navaud, 15 October 2013, Cas12.5. Saône-et-Loire 71, Saint-Vincent-en-Bresse, alt. approx. 210 m , in a public lawn under B. pendula, leg S. Pitois, 26 November 2008, SVB08.1; Pyrénées-Orientales 66, Prats-de-Mollo, alt. approx. 925 m , roadside in forest under B. pendula, leg P. Jargeat and H. Gryta, 03 October 2010, CA10.A1; Gers 32, Eauze, alt. approx. 145 m, river bank under Alnus glutinosa, leg J.P. Chaumeton, 09 November 2011, B111101; Haute-Garonne 31, Toulouse, alt. approx. 150 m , in a public lawn under Cedrus sp., not far from B. pendula, leg J.P. Chaumeton, 11 November 2011, B111114; Tarn 81, Arfons, alt. approx. 750 m, mixed forest with B. pendula and Fagus sylvatica, leg P. Jargeat and H. Gryta, 12 October 2012, MN12.08; Haute-Garonne 31, Castanet-Tolosan, alt. approx. 150 m , in a public lawn under B. pendula, leg P. Jargeat, H. Gryta and J.P. Chaumeton, 15 October 2012, B121005; HautesPyrénées 65, Cantaous, alt. approx. 590 m , in a forest path under Corylus avellana, leg J.P. Chaumeton, 16 October 2012, B121007.

Italy: Vezzano S.C., Reggio nell' Emilia (Emilia Romagna), Case di Casino, Monte Duro, alt. approx. 500 m , in a mixed forest of deciduous woods with Quercus pubescens, Fraxinus ornus, Ostrya carpinifolia, Castanea sativa, on a small slope at the side of a wide path, leg. G. Simonini, 21 October 2012, TO AVP164 (GS10076).

Selected icons: Ludwig (2000) pl. 61.2B. The shape of basidiomes, the olivaceous colour and the whitish discolouration of the young specimen are in accordance with Paxillus cuprinus. The description by the same author (s.n. Paxillus involutus) is more collective. Sowerby's (1797, pl. 56) colour plate of ‘Agaricus contiguus’ also gives a good representation of P. cuprinus.

Key to species of the Paxillus involutus complex in Europe

1. Green reaction on the pileus with concentrated ammonia (more obvious on the slimy part). Pileus surface often viscid to glutinous and usually brightly coloured with yellow, orange or fulvous shade. Spore print in most cases greenish tinged Paxillus ammoniavirescens(=Paxillus validus).

1*. No green reaction on the pileus with concentrated ammonia. Pileus surface slightly slimy only in wet weather and with duller colours. Fresh spore print reddish without a greenish shade $\mathbf{2}$.
2. Basidiome fairly large, with pileus up to 30 cm diameter, often growing in clusters. Fresh spore print deep reddish brown to vinaceous brown. Spores broadly ellipsoid (Q value 1.38-1.54), only the largest nearly subamygdaliform Paxillus obscurisporus.

2*. Basidiome smaller and slender, with pileus up to $12(20) \mathrm{cm}$, scattered or connate by 2 or 3 . Fresh spore print lighter, ochraceous with reddish shade. Spores ovoid or ellipsoid or ellipticamygdaliform 3.
3. In forests, typically in shaded places. Associated with a large range of trees, conifers or hardwoods. Pileus often umbonate with variable colours: grey-brown, rusty brown, ochraceous brown, olivaceous brown, sometimes whitish. Spores ellipsoid, ovoid or ellipsoid-amygdaliform, with apical constriction inconstant to rare \boldsymbol{P}. involutus.

3*. In bright places, in urban as well as natural areas. Associated with Betulaceae (Betula, Alnus, Corylus, Ostrya). Pileus with olivaceous shade when young and coppery brown or reddish brown in age. Spores ellipsoid-ovoid to amygdaliform with a constant to frequent apical constriction Paxillus cuprinus.

Discussion

In this study, we combined molecular and taxonomic approaches and we included available data from the literature and from sequence databases as much as possible to clearly characterize species belonging to the Paxillus involutus complex.

The phylogenetic analysis conducted with three genes (ITS, tef1- α, and $g p d$) and with the concatenated data set revealed four lineages, in accordance with the results obtained by Hedh et al. (2008) with a set of five different genes (hydA, actA, rabA, gpiA, and β-tubA) and Vellinga et al. (2012). As intralineage genetic diversity was always lower than interlineage genetic diversity, the delimitation of the four species is very well supported. The tef and gpd trees do not recover the same topological relations as the ITS or concatenated trees but a similar result was also obtained with the gene hydA (Hedh et al. 2008), that clusters Paxillus cuprinus, Paxillus obscurisporus, and Paxillus ammoniavirescens while P. involutus is more distant. In fact, these genes encode for proteins and most of the variability is located in their introns. Introns accumulate mutations and have an accelerated, independent evolution rate. Furthermore, proteins may have diverged at different rates, possibly due to changes in selection pressure.

Two of the phylogenetic species are identified according to P. obscurisporus and P. ammoniavirescens type specimens sequences.

We only studied two P. obscurisporus collections, so it was not possible to go further than Hahn \& Agerer into the description of that species (1999). Like these authors, we observed lead-grey to ochre-grey, large and massive basidiomes, growing in clusters. The spore deposit was dark, the spores were broadly ellipsoid and only the largest ones had a subamygdaloid shape. The results of our P. obscurisporus spore and cystidia measurements are totally in accordance with those of Hahn \& Agerer (1999). This species seems to be preferentially associated to deciduous trees but Hahn \& Agerer (1999) indicate it under Abies procera, suggesting a broader host range. It seems to be heliophilous since it grows in city parks and public lawns, and it was found in forest edges in natural conditions. It is present in northern France (Moreau et al. 2013), northern Europe (Hedh et al. 2008), and in Chinese mountains (Binder \& Hibbett 2006). In the southwest of France, it was found in relatively cool submountainous areas with significant rainfall. Thus, a mesophilic or psychrophilic trend is supposed for this species.

According to Dessì \& Contu (1999), P. ammoniavirescens is easily identified from the green reaction of its pileus surface with ammonia and is characterized by relatively small basidiomes (513 cm), yellow-green tinges, light-brown spore prints, chrome-yellow flesh and growth in clusters.

It was collected in Mediterranean maquis and forests. However, Paxillus validus, later shown to be P. ammoniavirescens (Vellinga et al. 2012), is larger ($7-20 \mathrm{~cm}$), more robust, more reddish brown and was collected in city parks in Germany (Hahn \& Agerer 1999). Our specimens belong to either morphological type, with either large basidiomes from urban sites or slender basidiomes from river banks or forest edges. Spore shape is variable and statistical analyses emphasize a high diversity of spore sizes. In fact, some of our collections have the smallest spores of all samples, while a collection from Morocco (Vizzini 2009) has large spores (7.3-9.7 $\times 5.2-6.0$) and our Cas12.1 collection has the largest spores of all our sampling: (7.5)7.7-10.6(11.6) \times (4.8)4.9-6(6.3) $\mu \mathrm{m}$ (mean of $9 \times 5.3 \mu \mathrm{~m}$).

Morphological variability within this species has led to some misinterpretations. Paxillus vinosofractus nom. prov. (Dessì \& Contu 1999) looks very much like P. ammoniavirescens on a morphological basis (Vizzini 2009) and P. involutus f. subrubicundulus Bon (Bon \& Van Haluwyn 1981) appears to be the same as P. ammoniavirescens since it has vivid colours, a brightcoloured pileus, yellow gills, a greenish spore print, and ellipsoid spores. Unfortunately, we failed to amplify sequences from the holotype material of this taxon.

Pure P. ammoniavirescens cultures were obtained from large basidiomes and slender basidiomes. In all cases, mycelia grow fast and produce brown droplets. In contrast, Hahn \& Agerer (1999) observed a slow growth (1 cm per month) when they grew this species. To explain this discordance, we can hypothesize that they did not observe enough cultures to access the whole range of variability among P. ammoniavirescens cultures.

Paxillus ammoniavirescens is associated with a very large range of deciduous trees belonging to Fagaceae, Salicaceae, Betulaceae (this study), and even Eucalyptus and Cistus (Dessì and Contu, 1999 and Vizzini, 2009) as well as coniferous trees such as Pinus, Cedrus (this study), and Abies (Dessì \& Contu 1999). Paxillus ammoniavirescens may be heliophilous since it is always found in open areas like city parks and gardens (P. validus form) and in natural conditions, it grows in bright places such as maquis (Dessì \& Contu 1999), forest edges, river banks or meadows (P. ammoniavirescens form). It has the largest ecological range, from cold and wet climate in Sweden (Hedh et al. 2008) to Mediterranean hot and dry conditions in Italy (reported from Sardinia by Dessì \& Contu (1999)), Morocco (Vizzini 2009), and the South East of France (Vellinga et al., $\underline{2012}$ and Moreau et al., 2013).

A third lineage including the ATCC 200175 strain, whose complete genome is now sequenced (http://genome.jgi-psf.org/Paxin1/Paxin1.home.html), was previously assigned to P. involutus s. st. (Hedh et al., 2008 and Vellinga et al., 2012). Pale variants (P. involutus f. eburneus and a whitish collection from the UK) belong to that lineage (Gelardi et al., 2011 and Vellinga et al., 2012) and Paxillus albidulus (Sŭtara 1992), described as a small-sized species occurring in coniferous forests but not yet sequenced, is also most probably a white form of P. involutus. This species is characterized by its umbonate pileus. Spores are ellipsoid with sometimes a slight depression on the dorsal side near the apex. No brown droplets are observed in P. involutus cultures, as mentioned by Hahn \& Agerer (1999). It occurs under hardwoods and coniferous trees but only in closed areas such as forests. It may be a sciaphilous species and this could partially explain its absence in urban areas where large wooded parts are scarce.

The P involutus concept is based on Batsch's icone (1786). We consequently chose our Can12.1 collection, which belongs to that lineage and matches Hahn \& Agerer's description of P. involutus (1999), as the epitype for this species.

The fourth lineage corresponds to phylogenetic species IV in Hedh et al. (2008) and P. involutus II in Vellinga et al. (2012) and had never been described before. Based on the morphological description of our 17 collections, this species was named P. cuprinus since the colour change from grey-brown-olivaceous to coppery with age is an important feature to distinguish it. Moreover, it is characterized by spores with a slight depression on their dorsal side near the apex. On average, it has larger spores than the other three species, with a low variability confirmed by statistical analysis. In pure cultures, P. cuprinus mycelia grow slowly and produce brown droplets. All our P. cuprinus collections (from 11 different sites) were found near Betulaceae, including Alnus. All the literature data also mention it in the vicinity of Betulaceae (Hedh et al., 2008, Bahram et al., $\underline{2012}$ and Vellinga et al., 2012). This suggests a preference for this plant family. When associated with Alnus, P. cuprinus could be mistaken for Paxillus rubicundulus but P. rubicundulus has smaller spores (Orton 1969). Paxillus cuprinus seems to be heliophilous since it was always found in bright places, frequently in urban areas.

Despite a consistent collecting effort, in very different environments, and numerous sequences from other studies, all specimens and sequences analysed in this study are only assigned to one of the four species, reinforcing the hypothesis that there are only four species in the P. involutus complex in Europe. All the groups or species described so far should belong to one of those four species. For example, the three intersterility groups described by Fries (1985) as a 'forest type' mainly associated to coniferous trees and two 'park types' growing in tight groups in anthropic environments, with connate stipes, appear to correspond to woodland P. involutus and P. obscurisporus and P. ammoniavirescens, respectively. The four Paxillus species are common in Europe but they are also reported in North America, as native species such as P. involutus or as introduced species such as P. cuprinus (Vellinga et al. 2012), in Asia (P. cuprinus and P. obscurisporus, Bahram et al., 2012 and Binder and Hibbett, 2006) and according to Vizzini (2009), P. ammoniavirescens was found in Africa (Morocco). The presence of the North American Paxillus vernalis (Watling 1969) in Europe was reported (Jarosch and Bresinsky, 1999, Bresinsky, $\underline{2006}$ and Kibby, 2008) but identification was based on an erroneous concept of this species, established by Jarosch \& Bresinsky (1999). In fact, sequences from one of those collections (Pi1 AF167690, Pi12 AF167691, PiM1 AF167692, PiM4 AF167693, PiM2 AF167694, Jarosch \& Bresinsky 1999) belong to the P. obscurisporus phylospecies (this study) and the morphological descriptions suggest that the two other collections could belong to P. ammoniavirescens, P. obscurisporus or P. cuprinus.

When comparing the genetic diversity of P. cuprinus and P. involutus on the one hand and P. ammoniavirescens and P. obscurisporus on the other hand, the ITS genetic divergence (K) is below 3%, the admitted threshold to identify fungal species by barcoding (Peay et al., 2008 and Begerow et al., 2010). Genetic divergence was also below 3% when comparing Tricholoma scalpturatum and Tricholoma inocybeoides ($K=1.98 \%$) or Tricholoma argyraceum and Tricholoma cingulatum ($K=1.78$ \%) (Jargeat et al. 2010). Thus, in the two very distant genera Tricholoma and Paxillus but also in genera such as Cortinarius (Frøslev et al. 2007) or Alnicola (Rochet et al. 2011), the interspecific level is reached for genetic divergence values below 3%. As mentioned by Osmundson et al. (2013) or Hibbett et al. (2011), a unique sequence similarity cut-off for species delimitation, as is often used in molecular ecology studies, may introduce significant errors in species diversity estimates. A 1-2 \% divergence threshold appears as a good compromise.

All our observations and results indicate a strong stability in morphological features and host association for P. cuprinus while P. ammoniavirescens is highly variable, associated to a very large host range and is present through very different environmental conditions all over Europe. These observations correlate with the genetic results that highlight a low intraspecific genetic diversity in P. cuprinus, contrasting with the high genetic variability of P. ammoniavirescens. These differences
are supported by intraspecific genetic variations (π) calculated on a concatenated data set (1893 bp) generated from five other genes (Hedh et al. 2008). Actually, our π values are in accordance with those of 0.0009 and 0.01 calculated for group IV (P. cuprinus) and for group III (P. ammoniavirescens), respectively (Hedh et al. 2008). We can hypothesize that these two species have different dispersal and colonisation patterns in connection with adaptive ability. Paxillus ammoniavirescens could have features of pioneer and/or ruderal species that invest in sexual reproduction and spore production to colonise open areas, leading to a great genetic diversity. In contrast, P. cuprinus, like host-specific species such as Tricholoma populinum (Gryta et al., $\underline{2006}$ and Grubisha et al., 2012) or Suillus bovinus and Suillus pictus (Dahlberg and Stenlid, 1990 and Hirose et al., 2004) may have a more competitive strategy, which promotes the local persistence of mycelium attached to a specific host.

Conclusion

This study enabled us to build a clear framework for the Paxillus involutus complex and to reveal a few ecological characteristics: Paxillus cuprinus seems to have a preference for Betulaceae, P. involutus appears to be restricted to forests, under a dense crown cover, Paxillus obscurisporus can be related to cool and wet climates and Paxillus ammoniavirescens is likely to have a wide range of hosts and a worldwide distribution. For this species, the diversity at the genetic level is supported by morphological and ecological variabilities, which are often a major obstacle when telling different species apart. The genus Paxillus deserves further investigations in order to characterize and describe other species (Paxillus rubicundulus, Paxillus vernalis in North America) and population studies would help to better understand the biology and dispersal strategies of the different species.

Acknowledgements

We thank all the people who helped us collect specimens: Pierre-Arthur Moreau (Lil12 collection and Sowerby's plate), Guy Durrieu (Pou09 collection), Syméon Pitois (SVB08 collection), Nathalie Séjalon-Delmas (Auz08 collection), Giampaolo Simonini (TO AVP164 collection), and L3 BOPE students (Arf08, Arf09, Arf12, Car10, SCV09 collections). Comments and suggestions by PierreArthur Moreau were very helpful to improve the manuscript. We also thank Laëtitia Buisson for her advices for statistical analyses. Special thanks are addressed to Annie Buchwalter for proof-reading English language. The Université Toulouse III Paul Sabatier, the Centre National de la Recherche Scientifique (CNRS), and the labex TULIP provided financial support for this study.

References

1. Anthowiak et al., 2003
o R. Anthowiak, W.Z. Anthowiak, I. Banczyk, L. Mikolajczyk
o A new phenolic metabolite, involutone, isolated from the mushroom Paxillus involutus
o Canadian Journal of Chemistry, 81 (2003), pp. 118-124
Loading
2. Bahram et al., 2012
o M. Bahram, S. Põlme, U. Kõljalg, S. Zarre, L. Tedersoo
o Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the Hyrcanian forests of northern Iran
o New Phytologist, 193 (2012), pp. 465-473
o Loading
3. Batsch, 1786
o A.J.G.K. Batsch
o Elenchus fungorum. Continuatio prima
o Halae Magdeburgicae (1786)
o Loading
4. Begerow et al., 2010
o D. Begerow, H. Nilsson, M. Unterseher, W. Maier
o Current states and perspectives of fungal DNA barcoding and rapid identification procedures
o Applied Microbiology and Biotechnology, 87 (2010), pp. 99-108
o Loading
5. Binder and Hibbett, 2006
o M. Binder, D.S. Hibbett
o Molecular systematics and biological diversification of Boletales
o Mycologia, 98 (2006), pp. 971-981
o Loading
6. Bon and Van Haluwyn, 1981
o M. Bon, C. Van Haluwyn
o Macromycètes des terrils de charbonnage du Nord de la France. 2ème note (Boletales - Russulales)
o Documents Mycologiques XI, 44 (1981), pp. 29-52
Loading
7. Bresinsky, 2006
o A. Bresinsky
o Observations on mycobiota in Estonia
o Folia Cryptogamica Estonica, 42 (2006), pp. 1-9
o Loading
8. Dahlberg and Stenlid, 1990
o A. Dahlberg, J. Stenlid

- Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones
o New Phytologist, 115 (1990), pp. 487-493
o Loading

9. Darriba et al., 2012

- D. Darriba, G.L. Taboada, R. Doallo, D. Posada
- jModelTest 2: more models, new heuristics and parallel computing
o Nature Methods, 9 (2012), p. 772
o Loading

10. Deng et al., 2010
o W. Deng, B.S. Maust, D.C. Nickle, G.H. Learn, Y. Liu, L. Heath, S.L. Kosakovsky Pond, J.I. Mullins
o DIVEIN: a web server to analyze phylogenies, sequence divergence, diversity, and informative sites
o BioTechniques, 48 (2010), pp. 405-408
o Loading
11. Dessì and Contu, 1999
o P. Dessì, M. Contu
o Paxillus ammoniavirescens spec. nov. con note sul genere Paxillus in Sardegna
o Micologia e Vegetazione Mediterranea, 13 (1999), pp. 121-130
o Loading
12. De Vienne et al., 2007
o D.M. De Vienne, T. Giraud, O.C. Martin

- A congruence index for testing topological similarity between trees
o Bioinformatics, 23 (2007), pp. 3119-3124
0 Loading

13. Edgar, 2004

- R.C. Edgar
o MUSCLE: multiple sequence alignment with high accuracy and high throughput
o Nucleic Acids Research, 32 (2004), pp. 1792-1797
o Loading

14. Fries, 1985
o N. Fries
o Intersterility groups in Paxillus involutus
o Mycotaxon, 24 (1985), pp. 403-410
o Loading
15. Frøslev et al., 2007
o T.G. Frøslev, T.S. Jeppesen, T. Laessøe, R. Kjøller
o Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe
o Molecular Phylogenetics and Evolution, 44 (2007), pp. 217-227
o Loading
16. Galtier et al., 1996
o N. Galtier, M. Gouy, C. Gautier
o SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny
o Computer Applied Biosciences, 12 (1996), pp. 543-548
o Loading
17. Gelardi et al., 2011
o M. Gelardi, G. Segneri, E. Ercole, A. Vizzini
o Paxillus involutus f. eburneus f. nov., a molecular confirmed infraspecific taxon in the P. involutus complex from Italy
o Mycosphere, 2 (2011), pp. 547-554
o Loading
18. Grubisha et al., 2012
o L.C. Grubisha, N. Levsen, M.S. Olson, D.L. Taylor
o Intercontinental divergence in the Populus-associated ectomycorrhizal fungus Tricholoma populinum
o New Phytologist, 194 (2012), pp. 548-560
o Loading
19. Gryta et al., 2006
o H. Gryta, F. Carriconde, J.Y. Charcosset, P. Jargeat, M. Gardes
o Population dynamics of the ectomycorrizal fungal species Tricholoma populinum and Tricoloma scalpturatum associated with black poplar under differing environmental conditions
o Environmental Microbiology, 8 (2006), pp. 773-786
o Loading
20. Hall, 1999

- T.A. Hall
o BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT
o Nucleic Acids Symposium Series, 41 (1999), pp. 95-98
o Loading

1. Hahn and Agerer, 1999
o C. Hahn, R. Agerer
o Studium zum Paxillus involutus Formenkreis
o Nova Hedwigia, 69 (1999), pp. 241-310
o Loading
2. Hammer et al., 2001

- Ø. Hammer, D. Harper, P. Ryan
o PAST: paleontological statistics software package for education and data analysis
o Paleontologia Electronica, 4 (2001), p. 9
o Loading

3. Hedh et al., 2008
o J. Hedh, P. Samson, S. Erland, A. Tunlid
o Multiple gene genealogies and species recognition in the ectomycorrhizal fungus Paxillus involutus
o Mycological Research, 112 (2008), pp. 965-975

- Loading

4. Hibbett et al., 2011
o D.S. Hibbett, A. Ohman, D. Glotzer, M. Nuhn, P. Kirk, R.H. Nilsson
o Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences
o Fungal Biology Reviews, 25 (2011), pp. 38-47
o Loading
5. Hirose et al., 2004
o D. Hirose, J. Kikuchi, N. Kanzaki, K. Futai
o Genet distribution of sporocarps and ectomycorrhizas of Suillus pictus in a Japanese white pine plantation
o New Phytologist, 164 (2004), pp. 527-541
o Loading
6. Hrynkiewicz et al., 2010
o K. Hrynkiewicz, A. Ciessielska, I. Haug, C. Baum
o Ectomycorrhiza formation and willow growth promotion as affected by associated bacteria: role of microbial metabolites and use of C sources
o Biology and Fertility of Soils, 46 (2010), pp. 139-150
o Loading
7. Jargeat et al., 2010

- P. Jargeat, F. Martos, F. Carriconde, H. Gryta, P.-A. Moreau, M. Gardes
o Phylogenetic species delimitation in the ectomycorrhizal fungi and implications for barcoding: the case of the Tricholoma scalpturatum complex (Basidiomycota)
o Molecular Ecology, 19 (2010), pp. 5216-5230
o Loading

8. Jarosch and Bresinsky, 1999
o M. Jarosch, A. Bresinsky
o Speciation and phylogenetic distances witnin Paxillus s. str. (Basidiomycetes, Boletales)
o Plant Biology, 1 (1999), pp. 701-706
o Loading
9. Kibby, 2008
o G. Kibby
o Fungal portraits No. 33: Paxillus vernalis - first British record
o Field Mycology, 9 (2008), pp. 3-4
o Loading
10. Kornerup and Wanscher, 1967
o A. Kornerup, J.H. Wanscher
o Methuen Handbook of Color
o (2nd edn.)Methuen, London (1967)
o Loading
11. Librado and Rozas, 2009

- P. Librado, J. Rozas
o DnaSP v5: a software for comprehensive analysis of DNA polymorphism data
o Bioinformatics, 25 (2009), pp. 1451-1452
o Loading

12. Ludwig, 2000
o E. Ludwig
o Pilzkompendium Band 1. Abbildungen. Band 1. BeschreibungenIHW Verlag, Eching (2000)

- Loading

13. Martin and Bonito, 2012
o F. Martin, G.M. Bonito
o Ten years of genomics for ectomycorrhizal fungi: what have we achieved and where are we heading?
o A. Zambonelli, G.M. Bonito (Eds.), Edible Ectomycorrhizal Mushrooms, SpringerVerlag, Berlin Heidelberg (2012), pp. 383-401
o Loading
14. Martin et al., 2011
o F. Martin, D. Cullen, D. Hibbett, A. Pisabarro, J.W. Spatafora, S.E. Baker, I.V. Grigoriev
o Sequencing the fungal tree of life
o New Phytologist, 190 (2011), pp. 818-821
o Loading
15. Moreau et al., 2013
o P.-A. Moreau, S. Welti, B. Perić, P. Jargeat, S. Manzi, A. Vizzini

- Alpova komoviana (Boletales, Paxillaceae), a new sequestrate fungus from Montenegro, with a revised phylogeny of the genus in Europe
o Mycological Progress, 12 (2013), pp. 109-119
o Loading

16. Orton, 1969

- P.D. Orton
o Notes on British agarics III
o Notes from the Royal Botanical Garden Edinburgh, 29 (1969), pp. 75-127
o Loading

17. Osmundson et al., 2013
o T.W. Osmundson, V.A. Robert, C.L. Schoch, L.J. Baker, A. Smith, G. Robich, L. Mizzan, M.M. Garbelotto
o Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project
o PLoS One, 8 (2013), p. e62419

- Loading

18. Peay et al., 2008
o K. Peay, P. Kennedy, T. Bruns
o Fungal community ecology: a hybrid beast with a molecular master
o BioSciences, 58 (2008), pp. 799-810
o Loading
19. Pritsch et al., 2000
o K. Pritsch, J.C. Munch, F. Buscot
o Identification and differentiation of isolates of black alder mycorrhizas by sequences analysis of the ITS region
o Mycorrhiza, 10 (2000), pp. 87-93
o Loading
20. Rochet et al., 2011
o J. Rochet, P.-A. Moreau, S. Manzi, M. Gardes
o Comparative phylogenies and host specialization in the alder ectomycorrhizal fungi Alnicola, Alpova and Lactarius (Basidiomycota) in Europe
o BMC Evolutionary Biology, 11 (2011), p. 40
o Loading
21. Ronquist et al., 2012
o F. Ronquist, M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M.A. Suchard, J.P. Huelsenbeck
o MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space
o Systematic Biology, 61 (2012), pp. 539-542
o Loading
22. Sowerby, 1797
o J. Sowerby
o Coloured Figures of English Fungi or Mushrooms, vol. 1 (1797) London
o Loading
23. Sŭtara, 1992
o J. Sŭtara
o Paxillus albidulus, a new species of the family Paxillaceae
o Česká Mykologie, 45 (1992), pp. 129-133
o Loading
24. Vellinga, 1988
o E.C. Vellinga
o Glossary
o C. Bas (Ed.), et al., Flora Agaricina Neerlandica, Balkema, Rotterdam (1988), pp. 54-64
o Loading
25. Vellinga et al., 2012
o E.C. Vellinga, E.P. Blanchard, S. Kelly, M. Contu
o Paxillus albidulus, P. ammoniavirescens, and P. validus revisited
o Mycotaxon, 119 (2012), pp. 351-359
o Loading
26. Vizzini, 2009
o A. Vizzini
o Revisione Gomphidiaceae - Paxillaceae
o J.C. Maire (Ed.), et al., Compléments à la Flore des champignons supérieurs du Maroc de G. Malençon et R. Bertaut, C.E.M.M, Nice (2009), pp. 639-648
o Loading
27. Watling, 1969
o R. Watling
o New fungi from Michigan
o Notes from the Royal Botanical Garden Edinburgh, 29 (1969), pp. 60-65
o Loading
28. Winkelmann et al., 1986
o M. Winkelmann, W. Stangel, I. Schedel, B. Grabensee
o Severe hemolysis caused by antibodies against the mushroom Paxillus involutus and its therapy by plasma exchange
o Klinische Wochenschrift, 64 (1986), pp. 935-938
o Loading
